Advertisement

Monatshefte für Mathematik

, Volume 172, Issue 2, pp 179–187 | Cite as

Remarks on multivariate Gaussian Gabor frames

  • Götz E. PfanderEmail author
  • Peter Rashkov
Article

Abstract

Spanning properties of multivariate Gaussian Gabor systems are far from being fully understood. Our results illustrate that, unlike in dimension one where Gaussian Gabor frames are characterized in terms of lattice density, the behavior of Gaussian Gabor systems in higher-dimensions is intricate and further exploration is a valuable and challenging task.

Keywords

Gaussian window function Gabor frames and Riesz bases  Sampling in Bargmann–Fock spaces Beurling density 

Mathematics Subject Classification (2010)

42C15 42C30 30D10 30E05 46E20 

References

  1. 1.
    Bastiaans, M.J.: Gabor’s expansion and the Zak transform for continuous-time and discrete-time signals: critical sampling and rational oversampling. Eindhoven University of Technology research reports. Eindhoven University of Technology, Eindhoven (1995)Google Scholar
  2. 2.
    Bekka, B.: Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benedetto, J.J., Heil, C., Walnut, D.: Gabor analysis and the Balian–Low theorem. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms, chapter 2, pp. 84–122. Birkhäuser, Boston (1998)Google Scholar
  4. 4.
    Bourouihiya, A.: The tensor product of frames. Sampl. Theory Signal Image Process. 7(1), 65–76 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Christensen, O.: An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2003)Google Scholar
  6. 6.
    Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Gosson, M: Construction of multivariate Gaussian Weyl-Heisenberg frames (1). PreprintGoogle Scholar
  8. 8.
    Folland, G.B.: Harmonic analysis in phase space. Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)Google Scholar
  9. 9.
    Gabor, D.: Theory of communication. J. Inst. Elect. Eng. (London) 93(3), 429–457 (1946)Google Scholar
  10. 10.
    Gröchenig, K.: Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2001)Google Scholar
  11. 11.
    Gröchenig, K.: Multivariate Gabor frames and sampling of entire functions of several variables. Appl. Comput. Harmon. A 31(2), 218–227 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gröchenig, K., Han, D., Heil, C., Kutyniok, G.: The Balian–Low theorem for symplectic lattices in higher dimensions. Appl. Comput. Harmon. A 13(2), 169–176 (2003)CrossRefGoogle Scholar
  13. 13.
    Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Janssen, A.J.E.M.: Gabor representation of generalized functions. J. Math. Anal. Appl. 83(2), 377–394 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Janssen, A.J.E.M.: Signal analytic proof of two basic results on lattice expansions. Appl. Comput. Harmon. A 1(4), 350–354 (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Janssen, A. J. E. M.: Zak transforms with few zeros and the tie. In: Advances in Gabor analysis (Appl. Numer. Harmon. Anal.) pp. 31–70. Birkhäuser Boston, Boston (2003)Google Scholar
  17. 17.
    Kutyniok, G.: Beurling density and shift-invariant weighted irregular Gabor systems. Sampl. Theory Signal Image Process. 5(2), 163–181 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lyubarskiĭ, Y.I.: Frames in the Bargmann space of entire functions. In: Entire and subharmonic functions, advances in Soviet mathematics, vol. 11, pp. 167–180. American Mathematical Society, Providence (1992)Google Scholar
  19. 19.
    Ortega-Cerdà, J., Schuster, A., Varolin, D.: Interpolation and sampling hypersurfaces for the Bargmann–Fock space in higher dimensions. Math. Ann. 335(1), 79–107 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pfander, G.E., Rashkov, P.: Window design for multivariate Gabor frames on lattices. Technical report 21. Jacobs University, Bremen (2010)Google Scholar
  21. 21.
    Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann–Fock space. II. J. Reine Angew. Math. 429, 107–113 (1992)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.School of Engineering and ScienceJacobs UniversityBremenGermany
  2. 2.Fachbereich Mathematik und InformatikPhilipps Universität MarburgMarburgGermany

Personalised recommendations