Monatshefte für Mathematik

, Volume 173, Issue 4, pp 471–493 | Cite as

Identities for Anderson generating functions for Drinfeld modules



Anderson generating functions are generating series for division values of points on Drinfeld modules, and they serve as important tools for capturing periods, quasi-periods, and logarithms. They have been fundamental in recent work on special values of positive characteristic \(L\)-series and in transcendence and algebraic independence problems. In the present paper we investigate techniques for expressing Anderson generating functions in terms of the defining polynomial of the Drinfeld module and determine new formulas for periods and quasi-periods.


Drinfeld modules Anderson generating functions shadowed partitions periods quasi-periods Drinfeld logarithms 

Mathematics Subject Classification (1991)

Primary 11G09 Secondary 11B37 12H10 33E50 



We thank the referee for carefully reading the paper and for several helpful suggestions.


  1. 1.
    Anderson, G.W.: \(t\)-motives. Duke Math. J. 53(2), 457–502 (1986)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Anderson, G.W.: On Tate modules of formal \(t\)-modules. Internat. Math. Res. Notices 2(1993), 41–52 (1993)CrossRefGoogle Scholar
  3. 3.
    Anderson, G.W., Brownawell, W.D., Papanikolas, M.A.: Determination of the algebraic relations among special \(\Gamma \)-values in positive characteristic. Ann. Math. (2) 160(1), 237–313 (2004)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Anderson, G.W., Thakur, D.S.: Tensor powers of the Carlitz module and zeta values. Ann. Math. (2) 132(1), 159–191 (1990)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Brownawell, W.D., Papanikolas, M.A.: Linear independence of Gamma-values in positive characteristic. J. Reine Angew. Math. 549, 91–148 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Carlitz, L.: On certain functions connected with polynomials in a Galois field. Duke Math. J. 1(2), 137–168 (1935)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chang, C.-Y., Papanikolas, M.A.: Algebraic relations among periods and logarithms of rank \(2\) Drinfeld modules. Am. J. Math. 133(2), 359–391 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chang, C.-Y., Papanikolas, M.A.: Algebraic independence of periods and logarithms of Drinfeld modules. With an appendix by B. Conrad. J. Am. Math. Soc. 25(1), 123–150 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    El-Guindy, A., Papanikolas, M.A.: Explicit formulas for Drinfeld modules and their periods. J. Number Theory 133(6), 1864–1886 (2013)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    El-Guindy, A., Petrov, A.: On symmetric powers of \(\tau \)-recurrent sequences and deformations of Eisenstein series, arXiv:1305.2573 (2013)Google Scholar
  11. 11.
    Fresnel, J., van der Put, M.: Rigid Analytic Geometry and its Applications. Birkhäuser, Boston (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Gekeler, E.-U.: On the de Rham isomorphism for Drinfeld modules. J. Reine Angew. Math. 401, 188–208 (1989)MATHMathSciNetGoogle Scholar
  13. 13.
    Gekeler, E.-U.: Quasi-periodic functions and Drinfeld modular forms. Compositio Math. 69(3), 277–293 (1989)MATHMathSciNetGoogle Scholar
  14. 14.
    Goss, D.: Basic Structures of Function Field Arithmetic. Springer, Berlin (1996)CrossRefMATHGoogle Scholar
  15. 15.
    Papanikolas, M.A.: Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms. Invent. Math. 171(1), 123–174 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Pellarin, F.: Aspects de l’indépendance algébrique en caractéristique non nulle, Sém. Bourbaki, vol. 2006/2007. Astérisque 317(973), viii, 205–242 (2008)Google Scholar
  17. 17.
    Pellarin, F.: \(\tau \)-recurrent sequences and modular forms, arXiv:1105.5819 (2011)Google Scholar
  18. 18.
    Pellarin, F.: Values of certain \(L\)-series in positive characteristic. Ann. Math.(2) 176(3), 2055–2093 (2012)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Pellarin, F.: Estimating the order of vanishing at infinity of Drinfeld quasi-modular forms. J. Reine Angew. Math. (2013) (to appear)Google Scholar
  20. 20.
    Perkins, R.B.: Explicit formulae for \(L\)-values in finite characteristic, arXiv:1207.1753 (2012)Google Scholar
  21. 21.
    van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. Lecture Notes in Mathematics, vol. 1666. Springer, Berlin (1991)Google Scholar
  22. 22.
    Thakur, D.S.: Function Field Arithmetic. World Scientific Publishing, River Edge (2004)CrossRefMATHGoogle Scholar
  23. 23.
    Yu, J.: On periods and quasi-periods of Drinfeld modules. Compositio Math. 74(3), 235–245 (1990)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Science ProgramTexas A&M University in QatarDohaQatar
  2. 2.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  3. 3.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations