Monatshefte für Mathematik

, Volume 171, Issue 2, pp 241–253 | Cite as

Arithmetic properties of mirror maps associated with Gauss hypergeometric equations

  • Julien Roques


We draw up the list of Gauss hypergeometric differential equations having maximal unipotent monodromy at \(0\) whose associated mirror map has, up to a simple rescaling, integral Taylor coefficients at \(0\). We also prove that these equations are characterized by much weaker integrality properties (of \(p\)-adic integrality for infinitely many primes \(p\) in suitable arithmetic progressions). It turns out that the mirror maps with the above integrality property have modular origins.


Hypergeometric series and equations Mirror maps 

Mathematics Subject Classification (2000)



  1. 1.
    André, Y.: \(G\)-fonctions et transcendance. J. Reine Angew. Math. 476, 95–125 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Delaygue, E.: Intégralité des coefficients de taylor de racines d’applications miroir. Journal de Théorie des Nombres de Bordeaux, (2011)Google Scholar
  3. 3.
    Delaygue, E.: Propriétés arithmétiques des applications miroir. Thèse, Grenoble., (2011)
  4. 4.
    Delaygue, E.: Critère pour l’intégralité des coefficients de taylor des applications miroir. J. Reine Angew. Math. 662, 205–252 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dwork, B.: On \(p\)-adic differential equations, IV. Generalized hypergeometric functions as \(p\)-adic analytic functions in one variable. Ann. Sci. École Norm. Sup. 6(4), 295–315 (1973)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Katz, N.M.: Exponential Sums and Differential Equations, Volume 124 of Annals of Mathematics Studies. Princeton University Press, Princeton (1990)Google Scholar
  7. 7.
    Krattenthaler, C., Rivoal, T.: On the integrality of the Taylor coefficients of mirror maps II. Commun. Number Theory Phys. 3(3), 555–591 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Krattenthaler, C., Rivoal, T.: On the integrality of the Taylor coefficients of mirror maps. Duke Math. J. 151(2), 175–218 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Krattenthaler, C., Rivoal, T.: Analytic properties of mirror maps. J. Aust. Math. Soc., (2011)Google Scholar
  10. 10.
    Lian, B.H., Yau, S.-T.: Arithmetic properties of mirror map and quantum coupling. Comm. Math. Phys. 176(1), 163–191 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lian, B.H., Yau, S.-T.: Integrality of certain exponential series. In: Algebra and geometry (Taipei 1995), vol. 2 of Lectures for Algebraic Geometry, pp 215–227. International Press, Cambridge (1998)Google Scholar
  12. 12.
    Lian, B.H., Yau, S.-T.: The \(n\)th root of the mirror map. In: Calabi-Yau varieties and mirror symmetry (Toronto 2001), vol. 38 of Fields Institute Communication, pp 195–199. American Mathematical Society Providence, RI (2003)Google Scholar
  13. 13.
    Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966)zbMATHGoogle Scholar
  14. 14.
    Zudilin, V.V.: On the integrality of power expansions related to hypergeometric series. Mat. Zametki 71(5), 662–676 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institut FourierUniversité Grenoble 1, CNRS UMR 5582St Martin d’Hères cedexFrance

Personalised recommendations