Monatshefte für Mathematik

, Volume 172, Issue 3–4, pp 259–275 | Cite as

Trace formulas for nuclear operators in spaces of Bochner integrable functions

  • Julio DelgadoEmail author


The paper is devoted to trace formulas for nuclear operators in spaces of Bochner integrable functions. We characterise nuclearity for integral operators on such spaces and develop a trace formula for general kernels applying vector-valued maximal functions.


Integral operators Nuclear operators Bochner integral Vector-valued maximal function Trace formula 

Mathematics Subject Classification (2010)

Primary 47B10; Secondary 47G10 47B38 60G46 46E40 



This work has been supported by a Marie Curie International Incoming Fellowship of the European Commision 7th Framework Programme under contract number 301599. I would also like to thank an anonymous refeere for the valuable comments on the results and presentation helping to improve this manuscript.


  1. 1.
    Brislawn, C.: Kernels of trace class operators. Proc. Am. Math. Soc. 104, 1181–1190 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brislawn, C.: Traceable integral Kernels on countably generated measure spaces. Pac. J. Math. 150(2), 229–240 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castro, M.H., Menegatto, V.A., Peron, A.P.: Traceability of positive integral operators in the absence of a metric. Banach J. Math. Anal. 6(2), 98–112 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chatterji, S.D.: Martingales of Banach valued random variable. Bull. Am. Math. Soc. 66, 395–398 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chatterji, S.D.: A note on the convergence of Banach-space valued martingales. Math. Ann. 153(2), 142–149 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Defant, A., Floret, K.: Tensor norms and opertor ideals. North-Holland Mathematics Studies vol. 176. North-Holland, Amsterdam (1993)Google Scholar
  7. 7.
    Delgado, J.: A trace formula for nuclear operators on \(L^p\). Pseudo-differential operators: complex analysis and partial differential equations. In: Schulze, B.-W., Wong, M.W. (eds.) Operator Theory, Advances and Applications, vol. 205, pp. 181–193. Birkhäuser, Basel (2009)Google Scholar
  8. 8.
    Delgado, J.: The trace of nuclear operators on \(L^p(\mu )\) for \(\sigma \)-finite Borel measures on second second countable spaces. Integral Equ. Oper. Theory 68, 61–74 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Delgado, J., Wong, M.W.: \(L^{p}\)-nuclear pseudodifferential operators on \({\mathbb{Z}}\) and \({\mathbb{S}}\). Proc. Amer. Math. Soc. (in press)Google Scholar
  10. 10.
    Doob, J.L.: Stochastic Processes. Wiley, New York (1953)zbMATHGoogle Scholar
  11. 11.
    Doob, J.L.: Measure theory, Graduate Texts in Mathematics, 143. Springer, New York (1994)Google Scholar
  12. 12.
    Fefferman, Ch., Stein, E.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gohberg, I., Goldberg, S., Krupnik, N.: Traces and determinants of linear operators. Integral Equ. Oper. Theory 26, 136–187 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gohberg, I., Goldberg, S., Krupnik, N.: Traces and determinants of linear operators. Birkhäuser, Basel (2001)Google Scholar
  15. 15.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nuclaires. Mem. Am. Math. Soc. 16, 140 (1955)MathSciNetGoogle Scholar
  16. 16.
    Hytönen, T., McIntosh, A., Portal, P.: Kato’s square root problem in Banach spaces. J. Funct. Anal. 254(3), 675–726 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mansuy, R.: Histoire de Martingales, \(43^{e}\) anne. Math. Sci. Hum. 169, 105–113 (2005)MathSciNetGoogle Scholar
  18. 18.
    Mansuy, R.: The origins of the word “martingale”. Translated from the French [MR2135182] by Ronald Sverdlove. J. Électron. Hist. Probab. Stat. 5(1), p. 10 (2009)Google Scholar
  19. 19.
    Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)zbMATHGoogle Scholar
  20. 20.
    Pietsch, A.: Eigenvalues and s-numbers. Cambridge University Press, New York (1986)Google Scholar
  21. 21.
    Poincaré, H.: Sur les determinants d’ordre infini. Bull. S.M.F. 14, 77–90 (1886)zbMATHGoogle Scholar
  22. 22.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  23. 23.
    Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  24. 24.
    Weidman, J.: Integraloperatoren der spurklasse. Math. Ann. 163, 340–345 (1966)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK

Personalised recommendations