Advertisement

Monatshefte für Mathematik

, Volume 170, Issue 1, pp 49–63 | Cite as

Bornologically isomorphic representations of distributions on manifolds

  • Eduard Albert Nigsch
Article

Abstract

Distributional tensor fields can be regarded as multilinear mappings on smooth tensor fields with distributional values or as (classical) tensor fields with distributional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting.

Keywords

Tensor distributions Bornological isomorphism Distributions on manifolds Distributional geometry 

Mathematics Subject Classification (2010)

Primary 46T30; Secondary 46A32 

Notes

Acknowledgments

This research has been supported by START-project Y237 and project P20525 of the Austrian Science Fund and the Doctoral College ’Differential Geometry and Lie Groups’ of the University of Vienna.

References

  1. 1.
    Blyth, T.S.: Module Theory. Clarendon Press, Oxford (1997)Google Scholar
  2. 2.
    Bourbaki, N.: Algebra I, Chapt. 1–3. Elements of Mathematics. Springer, Berlin (1970)Google Scholar
  3. 3.
    Brickell, F., Clark, R.S.: Differentiable Manifolds: An Introduction. Van Nostrand Reinhold Company, London (1970)MATHGoogle Scholar
  4. 4.
    Capelle, J.: Convolution on homogeneous spaces. PhD thesis, University of Groningen (1996)Google Scholar
  5. 5.
    Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, volume 47 of Pure and Applied Mathematics. Academic Press, New York (1972)Google Scholar
  6. 6.
    Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to General Relativity. Kluwer Academic Publishers, Dordrecht (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Grosser, M., Kunzinger, M., Steinbauer, R., Vickers, J.A.: A global theory of algebras of generalized functions. II. Tensor distributions. N. Y. J. Math. 18, 139–199 (2012)MathSciNetMATHGoogle Scholar
  8. 8.
    Hörmander, L.: The analysis of linear partial differential operators. I. In: Classics in Mathematics. Springer, Berlin (2003)Google Scholar
  9. 9.
    Jarchow, H.: Locally Convex Spaces. B. G.Teubner, Stuttgart (1981)CrossRefMATHGoogle Scholar
  10. 10.
    Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)Google Scholar
  11. 11.
    Kucera, J., McKennon, K.: Continuity of multiplication of distributions. Int. J. Math. Math. Sci 4, 819–822 (1981)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lang, S.: Fundamentals of Differential Geometry. Springer, New York (1999)CrossRefMATHGoogle Scholar
  13. 13.
    Navarro González, J.A., Sancho de Salas, J.B.: \(C^\infty \)-Differentiable Spaces. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  14. 14.
    Schaefer, H.H.: Topological Vector Spaces. Springer, New York (1971)CrossRefGoogle Scholar
  15. 15.
    Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1976)Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations