Monatshefte für Mathematik

, Volume 169, Issue 3–4, pp 267–284 | Cite as

Harmonic functions on [IN] and central hypergroups



In this paper we introduce the notions of [I N] and [S I N]-hypergroups and prove a Choquet-Deny type theorem for [I N] and central hypergroups. More precisely, we prove a Liouville theorem for bounded harmonic functions on a class of [I N]-hypergroups. Further, we show that positive harmonic functions on [I N]-hypergroups are integrals of exponential functions. Similar results are proved for [S I N] and central hypergroups.


Convolution equation Harmonic function [IN]-hypergroup [SIN]-hypergroup Central hypergroup 

Mathematics Subject Classification

Primary 43A62 43A10 Secondary 45E10 31C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amini M., Chu C.-H.: Harmonic functions on hypergroups. J. Func. Anal. 261, 1835–1864 (2011)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Azencott, R.: Espaces de Poisson des groupes localement compacts. In: Lecture Notes in Math, vol. 148. Springer, Berlin (1970)Google Scholar
  3. 3.
    Bloom, R., Heyer, H.: Harmonic analysis of probability measures on hypergroups. In: de Gruyter Stud. Math. vol. 20. Walter de Gruyter, Berlin (1995)Google Scholar
  4. 4.
    Choquet, G.: Lectures on analysis, vol. 1. W.A. Benjamin, New York (1969)Google Scholar
  5. 5.
    Choquet G., Deny J.: Sur l’ équation de convolution μ * σμ. C.R. Acad. Sci. Paris, Ser. I Math. 250, 779–801 (1960)Google Scholar
  6. 6.
    Chu, C.-H.: Matrix convolution operators on groups. In: Lecture Notes in Math, vol. 1956. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Chu C.-H., Hilberdink T.: The convolution equation of Choquet and Deny on nilpotent groups. Integral Equ. Oper. Theory 26, 1–13 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chu, C.-H., Lau, A.T-M.: Harmonic functions on groups and Fourier algebras. In: Lecture Notes in Math, vol. 1782. Springer, New York (2002)Google Scholar
  9. 9.
    Chu C.H., Lau A.T-M.: Harmonic functions on topological groups and symmetric spaces. Math. Z. 268, 649–673 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chu C.-H., Leung C.-W.: Harmonic functions on homogeneuous spaces. Monatshefte fur Math. 128, 227–235 (1999)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chu C.-H., Leung C.-W.: The convolution equation of Choquet and Deny on [IN]-groups. Integral Equ. Oper. Theory 40, 391–402 (2001)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Furstenberg H.: A Poisson formula for semi-simple Lie groups. Ann. Math. 77, 335–386 (1963)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Granirer E.E.: On some properties of the Banach algebras A p(G) for locally compact groups. Proc. Am. Math. Soc. 95, 375–381 (1985)MathSciNetMATHGoogle Scholar
  14. 14.
    Hauenschild W., Kaniuth E., Kumar A.: Harmonic analysis on central hypergroups and induced representations. Pac. J. Math. 110, 83–112 (1984)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Iwazawa K.: Topological groups with invariant compact neighborhoods of the identity. Ann. Math. 54, 345–348 (1951)CrossRefGoogle Scholar
  16. 16.
    Jewett R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18, 1–101 (1975)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Lasser R.: Convolution semigroups on hypergroups. Pac. J. Math. 127, 353–371 (1987)MathSciNetMATHGoogle Scholar
  18. 18.
    Vogel M.: Harmonic analysis and spectral synthesis in central hypergroups. Math. Annalen 281, 369–385 (1988)MATHCrossRefGoogle Scholar
  19. 19.
    Voit M.: Hypergroups with invariant metric. Proc. Am. Math. Soc. 126, 2635–2640 (1998)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Vrem R.C.: Harmonic analysis on compact hypergroups. Pac. J. Math. 85, 239–251 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vrem R.C.: Hypergroup joins and their dual objects. Pac. J. Math. 111, 483–495 (1984)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Vrem R.C.: Connectivity and supernormality results for hypergroups. Math. Z. 195, 419–428 (1987)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Zeuner H.: One-dimensional hypergroups. Adv. Math. 76, 1–18 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematical SciencesTarbiat Modares UniversityTehranIran
  2. 2.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations