Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ensemble averages when β is a square integer

  • 56 Accesses

  • 3 Citations

Abstract

We give a hyperpfaffian formulation of partition functions and ensemble averages for Hermitian and circular ensembles when L is an arbitrary integer and β = L 2 and when L is an odd integer and β = L 2 + 1.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Adler M., Forrester P.J., Nagao T., van Moerbeke P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99(1–2), 141–170 (2000)

  2. 2

    Askey R.: Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11(6), 938–951 (1980)

  3. 3

    Barvinok A.I.: New algorithms for linear k-matroid intersection and matroid k-parity problems. Math. Program. 69(3, Ser. A), 449–470 (1995)

  4. 4

    Borodin, A.: Determinantal point processes. In: Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2010)

  5. 5

    Borodin A., Sinclair C.D.: The Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys. 291(1), 177–224 (2009)

  6. 6

    Bostan, A., Dumas, P.: Wronskians and linear independence. Am. Math. Mon. (to appear)

  7. 7

    Redelmeier, D.: Hyperpfaffians in algebraic combinatorics. Master’s thesis, University of Waterloo. http://uwspace.uwaterloo.ca/handle/10012/1055 (2006)

  8. 8

    de Bruijn, N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. (N.S.) 19, 133–151 (1955)

  9. 9

    Dyson F.J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3, 140–156 (1962)

  10. 10

    Dyson F.J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19, 235–250 (1970)

  11. 11

    Forrester P.J., Warnaar S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. (N.S.) 45(4), 489–534 (2008)

  12. 12

    Good I.J.: Short proof of a conjecture by Dyson. J. Math. Phys. 11, 1884 (1970). doi:10.1063/1.1665339

  13. 13

    Gunson J.: Proof of a conjecture by Dyson in the statistical theory of energy levels. J. Math. Phys. 3(4), 752–753 (1962)

  14. 14

    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)

  15. 15

    Ishikawa M., Okada S., Tagawa H., Zeng J.: Generalizations of Cauchy’s determinant and Schur’s Pfaffian. Adv. Appl. Math. 36(3), 251–287 (2006)

  16. 16

    Luque J.-G., Thibon J.-Y.: Pfaffian and Hafnian identities in shuffle algebras. Adv. Appl. Math. 29(4), 620–646 (2002)

  17. 17

    Mahoux G., Mehta M.L.: A method of integration over matrix variables. IV. J. Phys. I 1(8), 1093–1108 (1991)

  18. 18

    Matsumoto S.: Hyperdeterminantal expressions for Jack functions of rectangular shapes. J. Algebra 320(2), 612–632 (2008)

  19. 19

    Mehta M.L.: Random matrices. Pure and Applied Mathematics, vol. 142 (Amsterdam). 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

  20. 20

    Mehta M.L., Dyson F.J.: Statistical theory of the energy levels of complex systems. V. J. Math. Phys. 4, 713–719 (1963)

  21. 21

    Meray C.: Sur un determinant dont celui de Vandermonde n’est qu’un particulier. Revue de Mathématiques Spéciales 9, 217–219 (1899)

  22. 22

    Rains E.M.: Correlation functions for symmetrized increasing subsequences. http://arXiv.org:math/0006097 (2000)

  23. 23

    Selberg A.: Bemerkninger om et multipelt integral. Norsk Mat. Tidsskr 26, 71–78 (1944)

  24. 24

    Selberg, A.: Collected papers, vol. I. Springer-Verlag, Berlin (1989) (with a foreword by K. Chandrasekharan)

  25. 25

    Sinclair C.D.: Correlation functions for β = 1 ensembles of matrices of odd size. J. Stat. Phys. 136(1), 17–33 (2009)

  26. 26

    Tracy C.A., Widom H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5–6), 809–835 (1998)

  27. 27

    Zeilberger D.: A combinatorial proof of Dyson’s conjecture. Discret. Math. 41(3), 317–321 (1982)

Download references

Author information

Correspondence to Christopher D. Sinclair.

Additional information

This research was supported in part by the National Science Foundation (DMS-0801243).

Communicated by C. Krattenthaler.

Electronic supplementary material

The Below is the Electronic supplementary material.

ESM 1 (TEX 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinclair, C.D. Ensemble averages when β is a square integer. Monatsh Math 166, 121–144 (2012). https://doi.org/10.1007/s00605-011-0371-8

Download citation

Keywords

  • Random matrix theory
  • Partition function
  • Pfaffian
  • Hyperpfaffian
  • Selberg integral

Mathematics Subject Classification (2010)

  • 15B52
  • 82C22
  • 60G55