Advertisement

Monatshefte für Mathematik

, Volume 167, Issue 1, pp 61–80 | Cite as

On the structure of analytic vectors for the Schrödinger representation

  • Rahul Garg
  • Sundaram ThangaveluEmail author
Article

Abstract

This article deals with the structure of analytic and entire vectors for the Schrödinger representations of the Heisenberg group. Using refined versions of Hardy’s theorem and their connection with Hermite expansions we obtain very precise representation theorems for analytic and entire vectors.

Keywords

Heisenberg group Schrödinger representations Hermite and Laguerre functions Weyl transform Hermite semigroup Poisson–Hermite semigroup 

Mathematics Subject Classification (2010)

Primary 42C15 Secondary 42B35 42C10 42A56 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byun D.: Inversions of Hermite semigroup. Proc. Am. Math. Soc. 118(2), 437–445 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Demange, B.: Uncertainty principles associated to non-degenerate quadratic forms. Mémoires de la SMF 119 (2009)Google Scholar
  3. 3.
    Dixmier J., Malliavin P.: Factorisations de fonctions et de vecteurs indfiniment diffrentiables. Bull. Sci. Math. (2) 102(4), 307–330 (1978)MathSciNetGoogle Scholar
  4. 4.
    Garg R., Thangavelu S.: On the Hermite expansions of functions from Hardy class. Stud. Math. 198, 177–195 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gimperlein, H., Kroetz, B., Lienau, C.: Analytic factorization of Lie group representations. arXiv:0910.0177v1Google Scholar
  6. 6.
    Goodman R.W.: Analytic and entire vectors for representations of Lie groups. Trans. Am. Math. Soc. 143, 55–76 (1969)zbMATHCrossRefGoogle Scholar
  7. 7.
    Goodman R.W.: Complex Fourier analysis on a nilpotent Lie group. Trans. Am. Math. Soc. 160, 373–391 (1971)zbMATHCrossRefGoogle Scholar
  8. 8.
    Gröchenig K., Zimmermann G.: Hardy’s theorem and the short-time Fourier transform of Schwartz functions. J. Lond. Math. Soc. (2) 63(1), 205–214 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hardy G.H.: A theorem concerning Fourier transforms. J. Lond. Math. Soc. 8, 227–231 (1933)CrossRefGoogle Scholar
  10. 10.
    Hille E.: Contributions to the theory of Hermitian series. II. The representation problem. Trans. Am. Math. Soc. 47, 80–94 (1940)MathSciNetGoogle Scholar
  11. 11.
    Nelson E.: Analytic vectors. Ann. Math. (2) 70, 572–615 (1959)zbMATHCrossRefGoogle Scholar
  12. 12.
    Penney R.: Entire vectors and holomorphic extension of representations, I, II. Trans. Am. Math. Soc. 198, 107–121 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Penney R.: Entire vectors and holomorphic extension of representations, I, II. Trans. Am. Math. Soc. 191, 195–207 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Pfannschmidt C.: A generalization of the theorem of Hardy: a most general version of the uncertainty principle for Fourier integrals. Math. Nachr. 182, 317–327 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Radha R., Thangavelu S.: Holomorphic Sobolev spaces, Hermite and special Hermite semigroups and a Paley-Wiener theorem for the windowed Fourier transform. J. Math. Anal. Appl. 354, 564–574 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Szego G.: Orthogonal Polynomials. American Mathematical Society Colloquium. Publication, Providence (1967)Google Scholar
  17. 17.
    Thangavelu S.: An analogue of Gutzmer’s formula for Hermite expansions. Stud. Math. 185(3), 279–290 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Thangavelu S.: Lectures on Hermite and Laguerre expansions. Math Notes 42. Princeton Univ. Press, Princeton (1993)Google Scholar
  19. 19.
    Thangavelu S.: On the unreasonable effectiveness of Gutzmer’s formula. Contemp. Math. 505, 199–217 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vemuri, M.: Hermite expansions and Hardy’s theorem. arxiv:0801.2234Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations