Transfers of metabelian p-groups
- 78 Downloads
- 9 Citations
Abstract
Explicit expressions for the transfers V i from a metabelian p-group G of coclass cc(G) = 1 to its maximal normal subgroups M 1, . . . , M p+1 are derived by means of relations for generators. The expressions for the exceptional case p = 2 differ significantly from the standard case of odd primes p ≥ 3. In both cases the transfer kernels Ker(V i ) are calculated and the principalisation type of the metabelian p-group is determined, if G is realised as the Galois group \({{\rm{Gal}}({F}_p^2(K)\vert K)}\) of the second Hilbert p-class field \({{F}_p^2(K)}\) of an algebraic number field K. For certain metabelian 3-groups G with abelianisation G/G′ of type (3, 3) and of coclass cc(G) = r ≥ 3, it is shown that the principalisation type determines the position of G on the coclass graph \({\mathcal{G}(3,r)}\) in the sense of Eick and Leedham-Green.
Keywords
Metabelian p-groups of maximal class Transfers of 2-groups Tree of metabelian 3-groups of non-maximal class Principalisation of p-class groups Quadratic base fieldsMathematics Subject Classification (2000)
Primary: 20F12 20F14 Secondary: 11R29 11R11Preview
Unable to display preview. Download preview PDF.
References
- 1.Artin E.: Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Sem. Univ. Hamburg 5, 353–363 (1927)MATHCrossRefGoogle Scholar
- 2.Artin E.: Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7, 46–51 (1929)MATHCrossRefGoogle Scholar
- 3.Ascione, J.: On 3-groups of second maximal class. Ph.D. Thesis, Australian National University, Canberra (1979)Google Scholar
- 4.Benjamin E., Snyder C.: Real quadratic number fields with 2-class group of type (2,2). Math. Scand. 76, 161–178 (1995)MathSciNetMATHGoogle Scholar
- 5.Berkovich Y.: Groups of prime power order, Volume 1 Expositions in Mathematics 46. de Gruyter, Berlin (2008)Google Scholar
- 6.Blackburn N.: On a special class of p-groups. Acta Math. 100, 45–92 (1958)MathSciNetMATHCrossRefGoogle Scholar
- 7.Dietrich, H., Eick, B., Feichtenschlager, D.: Investigating p-groups by coclass with GAP. Computational group theory and the theory of groups, Contemp. Math., vol. 470, pp. 45–61. AMS, Providence (2008)Google Scholar
- 8.Eick B., Leedham-Green C.: On the classification of prime-power groups by coclass. Bull. Lond. Math. Soc. 40, 274–288 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 9.Gorenstein D.: Finite groups. Harper and Row, New York (1968)MATHGoogle Scholar
- 10.Hall P.: The classification of prime-power groups. J. Reine Angew. Math. 182, 130–141 (1940)MathSciNetGoogle Scholar
- 11.Hasse H.: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil II: Reziprozitätsgesetz. Jber. der DMV 6, 1–204 (1930)Google Scholar
- 12.Hilbert D.: Die Theorie der algebraischen Zahlkörper. Jber. der DMV 4, 175–546 (1897)Google Scholar
- 13.James R.: The groups of order p 6 (p an odd prime). Math. Comp. 34(150), 613–637 (1980)MathSciNetMATHGoogle Scholar
- 14.Kisilevsky H.: Some results related to Hilbert’s Theorem 94. J. Number Theory 2, 199–206 (1970)MathSciNetMATHCrossRefGoogle Scholar
- 15.Kisilevsky H.: Number fields with class number congruent to 4 mod 8 and Hilbert’s Theorem 94. J. Number Theory 8, 271–279 (1976)MathSciNetMATHCrossRefGoogle Scholar
- 16.Leedham-Green C.R., McKay S.: The structure of groups of prime power order, London Math Soc Monographs, New Series, 27. Oxford Univ Press, Oxford (2002)Google Scholar
- 17.Mayer, D.C.: Principalization in complex S 3-fields. In: Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990. Congressus Numerantium, vol. 80, pp. 73–87 (1991)Google Scholar
- 18.Mayer, D.C.: The second p-class group of a number field (in preparation)Google Scholar
- 19.Mayer, D.C.: Principalization algorithm via class group structure (in preparation)Google Scholar
- 20.Miech R.J.: Metabelian p-groups of maximal class. Trans. Am. Math. Soc. 152, 331–373 (1970)MathSciNetMATHGoogle Scholar
- 21.Miyake K.: Algebraic investigations of Hilbert’s Theorem 94, the principal ideal theorem and the capitulation problem. Expo. Math. 7, 289–346 (1989)MathSciNetMATHGoogle Scholar
- 22.Nebelung, B.: Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem. Inauguraldissertation, Band 1, Universität zu Köln (1989)Google Scholar
- 23.Nebelung, B.: Anhang zu Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem. Inauguraldissertation, Band 2, Universität zu Köln (1989)Google Scholar
- 24.Scholz A., Taussky O.: Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm. J. Reine Angew. Math. 171, 19–41 (1934)Google Scholar
- 25.Taussky O.: A remark concerning Hilbert’s Theorem 94. J. Reine Angew. Math. 239/240, 435–438 (1970)MathSciNetGoogle Scholar