Monatshefte für Mathematik

, Volume 163, Issue 3, pp 315–325 | Cite as

Löwner chains with complex leading coefficient

Article

Abstract

In this paper we confirm that several crucial theorems due to Pommerenke and Becker for the theory of Löwner chains work well without normalization on the complex-valued first coefficient. As applications of those considerations, some new univalent and quasiconformal extension criteria are given in the last section.

Keywords

Löwner (Loewner) chain Quasiconformal mapping Univalent function 

Mathematics Subject Classification (2000)

Primary 30C80 Secondary 30C45 30C62 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker J.: Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen. J. Reine Angew. Math. 255, 23–43 (1972)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Becker J.: Über die Lösungsstruktur einer Differentialgleichung in der konformen Abbildung. J. Reine Angew. Math. 285, 66–74 (1976)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Becker J.: Conformal Mappings with Quasiconformal Extensions. Aspects of Contemporary Complex Analysis, pp. 37–77. Academic Press, London (1980)Google Scholar
  4. 4.
    Betker Th.: Löwner chains and quasiconformal extensions. Complex Var. Theory Appl. 20(1–4), 107–111 (1992)MathSciNetMATHGoogle Scholar
  5. 5.
    Brown J.E.: Quasiconformal extensions for some geometric subclasses of univalent functions. Int. J. Math. Math. Sci. 7(1), 187–195 (1984)MATHCrossRefGoogle Scholar
  6. 6.
    Conway, J.B.: Functions of One Complex Variable. II, Graduate Texts in Mathematics, vol. 159. Springer, New York (1995)Google Scholar
  7. 7.
    Gall, U.: Über das Randverhalten von Bazilevič-Funktionen. Dissertation an der Technischen Universität Berlin (1986)Google Scholar
  8. 8.
    Graham, I., Kohr, G.: Geometric function theory in one and higher dimensions. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 255. New York (2003)Google Scholar
  9. 9.
    Hotta, I.: Ruscheweyh’s univalent criterion and quasiconformal extensions. Kodai Math. J. (to appear)Google Scholar
  10. 10.
    Hotta I.: Explicit quasiconformal extensions and Löwner chains. Proc. Jpn. Acad. Ser. A Math. Sci. 85(8), 108–111 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Krzyż J.G.: Quasiconformal extensions of some special univalent functions. Colloq. Math. 51, 189–193 (1987)MathSciNetMATHGoogle Scholar
  12. 12.
    Miller, S.S., Mocanu, P.T.: Differential subordinations, theory and applications. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 225. New York (2000)Google Scholar
  13. 13.
    Pommerenke Ch.: On starlike and convex functions. J. Lond. Math. Soc. 37, 209–224 (1962)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pommerenke Ch.: Über die Subordination analytischer Funktionen. J. Reine Angew. Math. 218, 159–173 (1965)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Pommerenke Ch.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)MATHGoogle Scholar
  16. 16.
    Ruscheweyh S.: An extension of Becker’s univalence condition. Math. Ann. 220(3), 285–290 (1976)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sheil-Small T.: On Bazilevič functions. Quart. J. Math. Oxford Ser. 23(2), 135–142 (1972)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Division of Mathematics, Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations