Monatshefte für Mathematik

, Volume 162, Issue 2, pp 119–142 | Cite as

Gabor fields and wavelet sets for the Heisenberg group

Article

Abstract

We study singly-generated wavelet systems on \({\mathbb {R}^2}\) that are naturally associated with rank-one wavelet systems on the Heisenberg group N. We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N, we give an explicit construction for Parseval frame wavelets that are associated with I. We say that \({g\in L^2(I\times \mathbb {R})}\) is Gabor field over I if, for a.e. \({\lambda \in I}\), |λ|1/2 g(λ, ·) is the Gabor generator of a Parseval frame for \({L^2(\mathbb {R})}\), and that I is a Heisenberg wavelet set if every Gabor field over I is a Parseval frame (mother-)wavelet for \({L^2(\mathbb {R}^2)}\). We then show that I is a Heisenberg wavelet set if and only if I is both translation congruent with a subset of the unit interval and dilation congruent with the Shannon set.

Keywords

Wavelet Heisenberg group Gabor frame Parseval frame Multiplicity free subspace 

Mathematics Subject Classification (2000)

Primary 42C30 42C15 Secondary 22E27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Currey B.: Admissibility for a class of quasiregular representations. Can. J. Math. 59(5), 917–942 (2007)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Daubechies I.: Ten Lectures on Wavelets. CBMS-NSF Conference Series in Applied Mathematics. Capital Series Press, Boston (1992)Google Scholar
  3. 3.
    Dai X., Larson D., Speegle D.: Wavelet sets in \({\mathbb {R}^n}\). J. Fourier Anal. Appl. 3, 451–456 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dixmier J.: C *-Algebras. North Holland, Amesterdam (1977)Google Scholar
  5. 5.
    Folland G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  6. 6.
    Führ H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Lect. Notes in Math., vol. 1863. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Geller D.: Fourier analysis on the Heisenberg group. Proc. Nat. Acad. Sci. USA 74(4), 1328–1331 (1977)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Geller D., Mayeli A.: Continuous wavelets and frames on stratified Lie groups I. J. Fourier Anal. Appl. 12, 543–579 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gróchenig K.: Foundations of Time-Frequency Analysis. Birkhauser, Boston (2001)Google Scholar
  10. 10.
    Han D., Larsen D.: Frames, bases, and group representations. Mem. Amer. Math. Soc. 147(697) (2000)Google Scholar
  11. 11.
    Hernandez E., Wang X., Weiss G.: Smoothing minimally supported frequency (MSF) wavelets: Part I. J. Fourier Anal. Appl. 2, 329–340 (1996)MATHMathSciNetGoogle Scholar
  12. 12.
    Lemarie P.G.: Base d’ondelettes sur les groups de Le stratifies. Bull. Soc. Math. France 117, 211–232 (1989)MATHMathSciNetGoogle Scholar
  13. 13.
    Mayeli A.: Shannon multiresolution analysis on the Heisenberg group. J. Math. Anal. Appl. 348(2), 671–684 (2008)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceSaint Louis UniversitySt. LouisUSA
  2. 2.Mathematics DepartmentStony Brook UniversityStony BrookUSA

Personalised recommendations