Monatshefte für Mathematik

, Volume 162, Issue 2, pp 225–237 | Cite as

Isomorphisms of algebras of generalized functions

  • Hans Vernaeve


We show that for smooth manifolds X and Y, any isomorphism between the algebras of generalized functions (in the sense of Colombeau) on X, resp. Y is given by composition with a unique generalized function from Y to X. We also characterize the multiplicative linear functionals from the Colombeau algebra on X to the ring of generalized numbers. Up to multiplication with an idempotent generalized number, they are given by an evaluation map at a compactly supported generalized point on X.


Nonlinear generalized functions Algebra homomorphisms Multiplicative linear functionals Composition operators 

Mathematics Subject Classification (2000)

Primary 46F30 Secondary 46E25 54C40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aragona J., Juriaans S.O.: Some structural properties of the topological ring of Colombeau generalized numbers. Comm. Algebra 29(5), 2201–2230 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aragona J., Juriaans S.O., Oliveira O.R.B., Scarpalezos D.: Algebraic and geometric theory of the topological ring of Colombeau generalized functions. Proc. Edin. Math. Soc. (Series 2) 51(3), 545–564 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biagioni, H.A.: A nonlinear theory of generalized functions. Lecture Notes Math. 1421, Springer, New York (1990)Google Scholar
  4. 4.
    Colombeau J.-F.: New generalized functions and multiplication of distributions. North-Holland, Amsterdam (1984)zbMATHGoogle Scholar
  5. 5.
    Colombeau, J.-F.: Multiplication of distributions: a tool in mathematics, numerical engineering, and theorical physics. Lecture Notes Math. 1532, Springer, New York (1992)Google Scholar
  6. 6.
    Dapić N., Pilipović S.: Microlocal analysis of Colombeau’s generalized functions on a manifold. Indag. Math. (N.S.) 7(3), 293–309 (1996)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Delcroix, A., Hasler, M., Marti, J.-A., Valmorin, V. (eds): Nonlinear algebraic analysis and applications. Cambridge Scientific Publishers, Cambridge (2004)Google Scholar
  8. 8.
    Delcroix A., Hasler M., Pilipović S., Valmorin V.: Generalized function algebras as sequence space algebras. Proc. Amer. Math. Soc. 132, 2031–2038 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    de Roever J.W., Damsma M.: Colombeau algebras on a C -manifold. Indag. Math. (N.S.) 2(3), 341–358 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Grabowski J.: Isomorphisms of algebras of smooth functions revisited. Arch. Math. 85, 190–196 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R.: Geometric theory of generalized functions with applications to general relativity. Kluwer Academic Publishers, Dordrecht (2001)zbMATHGoogle Scholar
  12. 12.
    Grosser M., Kunzinger M., Steinbauer R., Vickers J.: A global theory of algebras of generalized functions. Adv. Math. 166, 50–72 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hirsch M.W.: Differential topology. Springer, New York (1976)zbMATHGoogle Scholar
  14. 14.
    Hörmann G., de Hoop M.: Microlocal analysis and global solutions of some hyperbolic equations with discontinuous coefficients. Acta Appl. Math. 67, 173–224 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kadison R.V., Ringrose J.R.: Fundamentals of the theory of operator algebras, vol. I. Academic Press, New York (1983)Google Scholar
  16. 16.
    Kolár I., Slovák J., Michor P.: Natural operations in differential geometry. Springer, Berlin (1993)zbMATHGoogle Scholar
  17. 17.
    Kunzinger M.: Generalized functions valued in a smooth manifold. Monatsh. Math. 137, 1–3149 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kunzinger M., Steinbauer R., Vickers J.: Intrinsic characterization of manifold-valued generalized functions. Proc. London Math. Soc. 87(2), 451–470 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kunzinger M., Steinbauer R., Vickers J.: Sheaves of nonlinear generalized functions and manifold-valued distributions. Trans. Amer. Math. Soc. 361, 5177–5192 (2009). doi: 10.1090/S0002-9947-09-04621-2 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mackey G.W.: Point realizations of transformation groups. Ill. J. Math. 6, 327–335 (1962)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Milnor, J., Stasheff, J.: Characteristic classes. Ann. Math. Stud. 76, Princeton (1974)Google Scholar
  22. 22.
    Mrčun J.: On isomorphisms of algebras of smooth functions. Proc. Amer. Math. Soc. 133, 3109–3113 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Nedeljkov M., Oberguggenberger M., Pilipović S.: Generalized solutions to a semilinear wave equation. Nonlinear Anal. 61, 461–475 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Oberguggenberger, M.: Multiplication of distributions and applications to partial differential equations. Pitman Res. Notes Math. 259, Longman Scientific TechnicalGoogle Scholar
  25. 25.
    Oberguggenberger M., Pilipović S., Scarpalezos D.: Local properties of Colombeau generalized functions. Math. Nachr. 256, 1–12 (2003)CrossRefGoogle Scholar
  26. 26.
    Oberguggenberger M., Wang Y.-G.: Nonlinear parabolic equations with regularized derivatives. J. Math. Anal. Appl. 233, 658–664 (1999)MathSciNetGoogle Scholar
  27. 27.
    Scarpalézos, D.: Topologies dans les espaces de nouvelles fonctions généralisées de Colombeau. \({{\widetilde{\mathbb{C} }}}\) -modules topologiques, Université Paris 7 (1993)Google Scholar
  28. 28.
    Schwartz L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Schwartz L.: Théorie des distributions. Hermann, Paris (1966)zbMATHGoogle Scholar
  30. 30.
    Steinbauer R., Vickers J.A.: The use of generalized functions and distributions in general relativity. Class. Quantum Grav. 23, R91–R114 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Zeidler E.: Nonlinear functional analysis and its applications, vol. I. Springer, New York (1986)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Ghent UniversityGentBelgium

Personalised recommendations