Monatshefte für Mathematik

, 154:303 | Cite as

The obstacle problem for nonlinear elliptic equations with variable growth and L1-data

  • José Francisco Rodrigues
  • Manel Sanchón
  • José Miguel Urbano


The aim of this paper is twofold: to prove, for L1-data, the existence and uniqueness of an entropy solution to the obstacle problem for nonlinear elliptic equations with variable growth, and to show some convergence and stability properties of the corresponding coincidence set. The latter follow from extending the Lewy-Stampacchia inequalities to the general framework of L1.

2000 Mathematics Subject Classification: 35J85, 35J70, 35B30, 35R35 
Key words: Obstacle problem, variable growth, entropy solutions, L1-data, Lewy-Stampacchia inequalities, stability 


  1. Acerbi, E, Mingione, G 2001Regularity results for a class of functionals with nonstandard growthArch Ration Mech Anal156121140MATHCrossRefMathSciNetGoogle Scholar
  2. Aharouch, L, Akdim, Y 2006Strongly nonlinear elliptic unilateral problems without sign condition and L1 dataJ Convex Anal13135149MATHMathSciNetGoogle Scholar
  3. Alkhutov, YuA 1997The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth conditionDifferential Equations3316531663MATHMathSciNetGoogle Scholar
  4. Alvino, A, Boccardo, L, Ferone, V, Orsina, L, Trombetti, G 2003Existence results for nonlinear elliptic equations with degenerate coercivityAnn Mat Pura Appl1825379MATHCrossRefMathSciNetGoogle Scholar
  5. Antontsev, S, Rodrigues, JF 2006On stationary thermorheological viscous flowsAnn Univ Ferrara Sez VII Sci Mat521936MATHCrossRefMathSciNetGoogle Scholar
  6. Antontsev, S, Shmarev, S 2006

    Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions

    Chipot, M eds. Handbook of Differential Equations, Stationary Partial Differential EquationsElsevierNew York1100
    CrossRefGoogle Scholar
  7. Attouch, H, Picard, C 1979Problèmes variationnels et théorie du potentiel non linéaireAnn Fac Sci Toulouse Math (5)189136MATHMathSciNetGoogle Scholar
  8. Bénilan, Ph, Boccardo, L, Gallouët, T, Gariepy, R, Pierre, M, Vázquez, JL 1995An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equationsAnn Scuola Norm Sup Pisa Cl Sci (4)22241273MATHMathSciNetGoogle Scholar
  9. Boccardo, L, Cirmi, GR 1999Existence and uniqueness of solution of unilateral problems with L1 dataJ Convex Anal6195206MATHMathSciNetGoogle Scholar
  10. Boccardo, L, Gallouët, T 1990Problèmes unilatéraux avec données dans L1C R Acad Sci Paris Sér I Math311617619MATHGoogle Scholar
  11. Brézis, H, Ponce, A 2005Reduced measures for obstacle problemsAdv Differential Equations1012011234MATHMathSciNetGoogle Scholar
  12. Brézis, H, Strauss, W 1973Semi-linear second-order elliptic equations in L1J Math Soc Japan25565590MATHMathSciNetCrossRefGoogle Scholar
  13. Chen, Y, Levine, S, Rao, M 2006Variable exponent, linear growth functionals in image restorationSIAM J Appl Math6613831406MATHCrossRefMathSciNetGoogle Scholar
  14. Cirmi, GR 2000Convergence of the solutions of nonlinear obstacle problems with L1-dataAsymptot Anal24233253MATHMathSciNetGoogle Scholar
  15. Dall’Aglio, P, Dal Maso, G 1999Some properties of the solutions of obstacle problems with measure dataRic Mat4899116MATHMathSciNetGoogle Scholar
  16. Diening, L 2004Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·)Math Nachr2683143MATHCrossRefMathSciNetGoogle Scholar
  17. Diening L, Hästö P, Nekvinda A (2004) Open problems in variable exponent Lebesgue and Sobolev spaces. In: Drabek and Rakosnik (eds) FSDONA04 Proceedings, Milovy, Czech Republic, pp 38–58Google Scholar
  18. Edmunds, D, Rákosník, J 2000Sobolev embeddings with variable exponentStudia Math143267293MATHMathSciNetGoogle Scholar
  19. Fan, X, Zhao, D 1999A class of De Giorgi type and Hölder continuityNonlinear Anal36295318CrossRefMathSciNetGoogle Scholar
  20. Harjulehto, P, Hästö, P, Koskenoja, M, Varonen, S 2006The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary valuesPotential Anal25205222MATHCrossRefMathSciNetGoogle Scholar
  21. Kinderlehrer, D, Stampacchia, G 1980An Introduction to Variational Inequalities and Their ApplicationsAcademic PressNew YorkMATHGoogle Scholar
  22. Kováčik, O, Rákosník, J 1991On spaces Lp(x) and W1,p(x)Czechoslovak Math J41592618MathSciNetGoogle Scholar
  23. Leone, C 2000On a class of nonlinear obstacle problems with measure dataCommun Partial Differ Equations2522592286MATHCrossRefMathSciNetGoogle Scholar
  24. Leone, C 2005Stability results for obstacle problems with measure dataAnn Inst Henri Poincaré Anal Non Linéaire22679704MATHCrossRefMathSciNetGoogle Scholar
  25. Lions, JL 1969Quelques méthodes de résolution des problèmes aux limites non linéairesDunod, Gauthier-VillarsParisMATHGoogle Scholar
  26. Mosco U (1976) Implicit variational problems and quasi-variational inequalities. Lect Notes Math 543: Berline Heidelberg New York: SpingerGoogle Scholar
  27. Palmeri, MC 2004Entropy subsolutions and supersolutions for nonlinear elliptic equations in L1Ric Mat53183212MathSciNetGoogle Scholar
  28. Rodrigues, JF 1987Obstacle Problems in Mathematical PhysicsNorth-HollandAmsterdamMATHGoogle Scholar
  29. Rodrigues, JF 2005Stability remarks to the obstacle problem for p-Laplacian type equationsCalc Var Partial Differential Equations235165MATHCrossRefMathSciNetGoogle Scholar
  30. Růžička M (2000) Electrorheological fluids: modeling and mathematical theory. Lect Notes Math 1748. Berlin Heidelberg New York: SpringerGoogle Scholar
  31. Sanchón M, Urbano JM (2008) Entropy solutions for the p(x)-Laplace equation. Trans Amer Math Soc, to appearGoogle Scholar
  32. Zhikov, V 1986Averaging of functionals of the calculus of variations and elasticity theoryIzv Akad Nauk SSSR Ser Mat50675710877MathSciNetGoogle Scholar
  33. Zhikov, V 1997Meyer-type estimates for solving the nonlinear Stokes systemDifferential Equations33108115MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • José Francisco Rodrigues
    • 1
    • 2
  • Manel Sanchón
    • 1
  • José Miguel Urbano
    • 1
  1. 1.University of CoimbraCoimbraPortugal
  2. 2.Universidade de LisboaLisboaPortugal

Personalised recommendations