Monatshefte für Mathematik

, Volume 160, Issue 2, pp 143–149 | Cite as

A law of the iterated logarithm for discrepancies: non-constant limsup

  • Katusi Fukuyama


We prove the existence of a sequence {n k x} whose discrepancies obey a bounded law of the iterated logarithm with a non-constant limsup.


Discrepancy Law of the iterated logarithm 

Mathematics Subject Classification (2000)

Primary: 11K38 42A55 60F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aistleitner C.: On the law of the iterated logarithm for the discrepancy of \({\langle n_k x \rangle}\) with multidimensional indices. Unif. Distrib. Theory 2, 89–104 (2007)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Aistleitner, C., Berkes, I.: On the law of the iterated logarithm for the discrepancy of \({\langle n_k x \rangle}\) . Monatsh Math (2008, in press). doi: 10.1007/s00605-008-0549-x
  3. 3.
    Berkes I., Philipp W., Tichy R.: Empirical processes in probabilistic number theory: the LIL for the discrepancy of (n k ω) mod 1. Ill. J. Math. 50, 107–145 (2006)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Berkes, I., Philipp, W., Tichy, R.: Metric discrepancy results for sequence {n k x} and diophantine equations, diophantine approximations. In: Tichy, R., Schlickewei, H., Schmidt, K. (eds.) Festschrift for Wolfgang Schmidt. Development in Mathematics, vol. 17, pp. 95–105. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Bobkov S., Götze F.: Concentration inequalities and limit theorems for randomized sums. Prob. Theory Relat. Fields 137, 49–81 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dhompongsa S.: Almost sure invariance principles for the empirical process of lacunary sequences. Acta Math. Hung. 49, 83–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fukuyama K.: The law of the iterated logarithm for discrepancies of {θ n x}. Acta Math. Hung. 118, 155–170 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fukuyama, K.: The law of the iterated logarithm for the discrepancies of a permutation of {n k x}. Acta Math. Hung. (to appear)Google Scholar
  9. 9.
    Fukuyama, K., Nakata, K.: A metric discrepancy result for the Hardy-Littlewood-Pólya sequences. Monatsh Math (2008, in press). doi: 10.1007/s00605-008-0051-5
  10. 10.
    Khintchine A.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92, 115–125 (1924)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kolmogoroff A.: Über das Gesetz des iterierten Logarithmus. Math. Ann. 101, 126–135 (1929)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Philipp, W.: Mixing sequences of random variables and probabilistic number theory. Memoirs Am. Math. Soc. 111, i+102pp (1971)Google Scholar
  13. 13.
    Philipp W.: Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26, 241–251 (1975)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Philipp W.: A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables. Ann. Probab. 5, 319–350 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Philipp W.: Empirical distribution functions and strong approximation theorems for dependent random variables. A problem of Baker in probabilistic number theory. Trans. Am. Math. Soc. 345, 705–727 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Salem R., Zygmund A.: Some properties of trigonometric series whose terms have random signs. Acta Math. 91, 245–301 (1954)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsKobe UniversityKobeJapan

Personalised recommendations