Monatshefte für Mathematik

, Volume 155, Issue 3–4, pp 317–347 | Cite as

The sum of digits of primes in \({\mathbb{Z}}\)[i]

  • Michael DrmotaEmail author
  • Joël Rivat
  • Thomas Stoll


We study the distribution of the complex sum-of-digits function s q with basis q = –a±i, \({a \in \mathbb{Z}^+}\) for Gaussian primes p. Inspired by a recent result of Mauduit and Rivat ( for the real sum-of-digits function, we here get uniform distribution modulo 1 of the sequence (αs q (p)) provided \({\alpha \in \mathbb{R} \setminus \mathbb{Q}}\) and q is prime with a ≥ 28. We also determine the order of magnitude of the number of Gaussian primes whose sum-of-digits evaluation lies in some fixed residue class mod m.


Sum-of-digits function Primes Gaussian integers Exponential sums 

Mathematics Subject Classification (2000)

Primary: 11A63 Secondary: 11N60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gelfond A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13, 259–265 (1968) MR0220693 (36 #3745)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Grabner P.J., Kirschenhofer P., Prodinger H.: The sum-of-digits function for complex bases. J. Lond. Math. Soc. (2) 57(1), 20–40 (1998) MR1624777 (99e:11010)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Grabner P.J., Liardet P.: Harmonic properties of the sum-of-digits function for complex bases. Acta Arith. 91(4), 329–349 (1999) MR1736016 (2001f:11126)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Heath-Brown D.R.: Primes represented by x 3 + 2y 3. Acta Math. 186, 1–84 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Huxley M.N.: Area, Lattice Points, and Exponential Sums. London Mathematical Society Monographs. Oxford University Press, New York (1996)Google Scholar
  6. 6.
    Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford University Press, Oxford (1975)Google Scholar
  7. 7.
    Hlawka E., Schoißengeier J., Taschner R.: Geometric and Analytic Number Theory. Springer, Berlin (1991)zbMATHGoogle Scholar
  8. 8.
    Iwaniec H.: Almost-primes represented by quadratic polynomials. Invent. Math. 47(2), 171–188 (1978) MR0485740 (58 #5553)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, Providence. xii+615 pp. MR2061214 (2005h:11005) (2004)Google Scholar
  10. 10.
    Kátai I., Kovács B.: Canonical number systems in imaginary quadratic fields. Acta Math. Acad. Sci. Hungar. 37(1-3), 159–164 (1981) MR0616887 (83a:12005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kátai I., Szabó J.: Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37(3–4), 255–260 (1975) MR0389759 (52 #10590)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience, New York. MR0419394 (54 #7415) (1974)Google Scholar
  13. 13.
    Landau E.: Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Math. Zeit. 21, 126–132 (1924) MR1544690CrossRefGoogle Scholar
  14. 14.
    Landau E.: Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Math. Zeit. 24, 299–310 (1926) MR1544766CrossRefGoogle Scholar
  15. 15.
    Mauduit, Chr., Rivat, J.: Sur un probléme de Gelfond: La somme des chiffres des nombres premiers. Ann. Math. (to appear). Electronically available at
  16. 16.
    Narkiewicz W.: Elementary and Analytic Theory of Algebraic Numbers, 3rd edn. Springer Monographs in Mathematics, Berlin (2004)zbMATHGoogle Scholar
  17. 17.
    Sierpinski W.: Elementary Number Theory. Polska Academia Nauk, Warszawa (1964)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryTechnische Universität WienWienAustria
  2. 2.Institut de Mathématiques de Luminy, CNRS UMR 6206Université de la MéditerranéeMarseille Cedex 9France

Personalised recommendations