Advertisement

Monatshefte für Mathematik

, Volume 155, Issue 3–4, pp 377–419 | Cite as

Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions

  • Shigeki Akiyama
  • Guy Barat
  • Valérie BerthéEmail author
  • Anne Siegel
Article

Abstract

This paper studies tilings and representation sapces related to the β-transformation when β is a Pisot number (that is not supposed to be a unit). The obtained results are applied to study the set of rational numbers having a purely periodic β-expansion. We indeed make use of the connection between pure periodicity and a compact self-similar representation of numbers having no fractional part in their β-expansion, called central tile: for elements x of the ring \({\mathbb {Z}[1/\beta]}\) , so-called x-tiles are introduced, so that the central tile is a finite union of x-tiles up to translation. These x-tiles provide a covering (and even in some cases a tiling) of the space we are working in. This space, called complete representation space, is based on Archimedean as well as on the non-Archimedean completions of the number field \({{\mathbb Q} (\beta)}\) corresponding to the prime divisors of the norm of β. This representation space has numerous potential implications. We focus here on the gamma function γ(β) defined as the supremum of the set of elements v in [0, 1] such that every positive rational number p/q, with p/q  ≤  v and q coprime with the norm of β, has a purely periodic β-expansion. The key point relies on the description of the boundary of the tiles in terms of paths on a graph called “boundary graph”. The paper ends with explicit quadratic examples, showing that the general behaviour of γ(β) is slightly more complicated than in the unit case.

Keywords

Beta-numeration Tilings Periodic expansions 

Mathematics Subject Classification (2000)

Primary: 11A63 Secondary: 03D45 11S99 28A75 52C23 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama, S.: Pisot Numbers and Greedy Algorithm. Number Theory (Eger, 1996), pp. 9–21. de Gruyter, Berlin (1998)Google Scholar
  2. 2.
    Akiyama, S.: Cubic Pisot Units With Finite Beta Expansions. Algebraic Number Theory and Diophantine Analysis (Graz, 1998), pp. 11–26. de Gruyter, Berlin (2000)Google Scholar
  3. 3.
    Akiyama S.: On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Jpn 54(2), 283–308 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Akiyama, S.: Pisot Number System and its Dual Tiling. Physics and Theoretical Computer Science (Cargese, 2006), pp. 133–154. IOS Press, Amsterdam (2007)Google Scholar
  5. 5.
    Akiyama S., Scheicher K.: Intersecting two dimensional fractals and lines. Acta Sci. Math. (Szeged) 3-4, 555–580 (2005)MathSciNetGoogle Scholar
  6. 6.
    Barat G., Berthé V., Liardet P., Thuswaldner J.M.: Dynamical directions in numeration. Ann. Inst. Fourier (Grenoble) 56(7), 1987–2092 (2006)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bedford, T.: Applications of dynamical systems theory to fractals—a study of cookie-cutter Cantor sets. In: Fractal Geometry and Analysis (Montreal, PQ, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 346, pp. 1–44. Kluwer, Dordrecht (1991) MR MR1140719Google Scholar
  8. 8.
    Berthé, V., Siegel, A.: Tilings associated with beta-numeration and substitutions. Integers 5(3), A2, 46 pp. (2005) (electronic)Google Scholar
  9. 9.
    Berthé V., Siegel A.: Purely periodic β-expansions in the Pisot non-unit case. J. Number Theor. 127, 153–172 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Bertrand A.: Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris Sér. A-B 285(6), A419–A421 (1977)MathSciNetGoogle Scholar
  11. 11.
    Blanchard F.: β-expansions and symbolic dynamics. Theoret. Comput. Sci. 65(2), 131–141 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Burdík Č, Frougny Ch., Gazeau J.P., Krejcar R.: Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31(30), 6449–6472 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cassels J.W.S., Fröhlich A.: Algebraic Number Theory. Academic Press, London (1986)Google Scholar
  14. 14.
    Cornfeld, I.P., Fomin, S.V., Sinaĭ, Ya.G.: Ergodic Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 245, Springer, New York (1982), Translated from the Russian by A. B. Sosinskiĭ. MR MR832433 (87f:28019)Google Scholar
  15. 15.
    Dajani K., Kraaikamp C., Solomyak B.: The natural extension of the β-transformation. Acta Math. Hungar. 73(1–2), 97–109 (1996) MR MR1415923 (99d:28029)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Frougny, C.: Number representation and finite automata. In: Topics in Symbolic Dynamics and Applications (Temuco, 1997), London Mathamaticlal Society Lecture Note Series, vol. 279, pp. 207–228. Cambridge University Press, Cambridge (2000)Google Scholar
  17. 17.
    Frougny C., Solomyak B.: Finite beta-expansions. Ergodic Theor. Dyn. Syst. 12, 45–82 (1992)MathSciNetGoogle Scholar
  18. 18.
    Hama M., Imahashi T.: Periodic β-expansions for certain classes of Pisot numbers. Comment. Math. Univ. St Paul. 46(2), 103–116 (1997)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Ito S., Rao H.: Purely periodic β-expansions with Pisot unit base. Proc. Am. Math. Soc. 133(4), 953–964 (2004) (electronic)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lindenstrauss E., Schmidt K.: Symbolic representations of nonexpansive group automorphisms. Israel J. Math. 149, 227–266 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lothaire, M.: Algebraic combinatorics on words. In: Encyclopedia of Mathematics and its Applications, vol. 90 (Chap. 7, written by C. Frougny), Cambridge University Press, Cambridge (2002)Google Scholar
  22. 22.
    Parry W.: On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Praggastis B.: Numeration systems and Markov partitions from self-similar tilings. Trans. Am. Math. Soc. 351(8), 3315–3349 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Qu Y.-H., Rao H., Yang Y.-M.: Periods of β-expansions and linear recurrent sequences. Acta Arith. 120(1), 27–37 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Rauzy, G.: Rotations sur les groupes, nombres algébriques, et substitutions, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988), Univ. Bordeaux I, Talence, 1988, Exp. No. 21, 12. MR 90g:11017Google Scholar
  26. 26.
    Rohlin V.A.: Exact endomorphisms of a Lebesgue space. Izv. Akad. Nauk SSSR Ser. Mat. 25, 499–530 (1961) MR MR0143873 (26 #1423)MathSciNetGoogle Scholar
  27. 27.
    Sano Y.: On purely periodic beta-expansions of Pisot numbers. Nagoya Math. J. 166, 183–207 (2002)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Schmidt K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. Lond. Math. Soc. 12(4), 269–278 (1980)zbMATHCrossRefGoogle Scholar
  29. 29.
    Schmidt K.: Algebraic coding of expansive group automorphisms and two-sided beta-shifts. Monatsh. Math. 129(1), 37–61 (2000) MR 2001f:54043zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Siegel A.: Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theor. Dyn. Syst. 23(4), 1247–1273 (2003)zbMATHCrossRefGoogle Scholar
  31. 31.
    Siegel, A., Thuswaldner, J.M.: Topological properties of rauzy fractals, preprint, 2007Google Scholar
  32. 32.
    Sing B.: Iterated function systems in mixed Euclidean and p-adic spaces. In: Hackensack N.J., ((eds) Complexus Mundi., pp. 267–276. World Science, Singapore (2006) MR MR2227210CrossRefGoogle Scholar
  33. 33.
    Sirvent V.F., Wang Y.: Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pacific J. Math. 206(2), 465–485 (2002) MR 2003g:37026zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Thurston, W.P.: Groups, tilings and finite state automata, AMS Colloquium lectures, AMS Colloquium lectures, 1989Google Scholar
  35. 35.
    Thuswaldner J.M.: Unimodular Pisot substitutions and their associated tiles. J. Théor. Nombres Bordeaux 18(2), 487–536 (2006) MR MR2289436zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Shigeki Akiyama
    • 1
  • Guy Barat
    • 2
  • Valérie Berthé
    • 3
    Email author
  • Anne Siegel
    • 4
  1. 1.Department of Mathematics, Faculty of ScienceNiigata UniversityNiigataJapan
  2. 2.Institut für Mathematik AT.U. GrazGrazAustria
  3. 3.LIRMMMontpellier Cedex 5France
  4. 4.IRISARennes CedexFrance

Personalised recommendations