Advertisement

Monatshefte für Mathematik

, Volume 153, Issue 4, pp 347–365 | Cite as

Infinitesimally flexible meshes and discrete minimal surfaces

  • Johannes WallnerEmail author
  • Helmut Pottmann
Article

Abstract.

We explore the geometry of isothermic meshes, conical meshes, and asymptotic meshes around the Christoffel dual construction of a discrete minimal surface. We present a discrete Legendre transform which realizes discrete minimal surfaces as conical meshes. Conical meshes turn out to be infinitesimally flexible if and only if their spherical image is isothermic, which implies that discrete minimal surfaces constructed in this way are infinitesimally flexible, and therefore possess reciprocal-parallel meshes. These are discrete minimal surfaces in their own right. In our study of relative kinematics of infinitesimally flexible meshes, we encounter characterizations of flexibility and isothermicity which are of incidence-geometric nature and are related to the classical Desargues configuration. The Lelieuvre formula for asymptotic meshes leads to another characterization of isothermic meshes in the sphere which is based on triangle areas.

2000 Mathematics Subject Classification: 53A40, 52C99, 51B15, 65D18 
Key words: Conical meshes, discrete minimal surfaces, reciprocal-parallel meshes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaschke, W 1929Vorlesungen über DifferentialgeometrieSpringerBerlinzbMATHGoogle Scholar
  2. Bobenko A (2006) Personal communicationGoogle Scholar
  3. Bobenko, A, Hoffmann, T, Springborn, BA 2006Minimal surfaces from circle patterns: geometry from combinatoricsAnn of Math164231264zbMATHMathSciNetCrossRefGoogle Scholar
  4. Bobenko, A, Pinkall, U 1996Discrete isothermic surfacesJ Reine Angew Math475187208zbMATHMathSciNetGoogle Scholar
  5. Bobenko A, Suris Y (2005) Discrete differential geometry. Consistency as integrability. Preprint, http://arxiv.org/abs/math.DG/0504358
  6. Bobenko A, Suris Y (2006) Isothermic surfaces in sphere geometries as Moutard nets. Preprint, http://arxiv.org/abs/math.CO/0610434
  7. Bobenko A, Suris Y (2007) On organizing principles of discrete differential geometry, geometry of spheres. Russian Math Surveys, to appear, http://arxiv.org/abs/math.DG/0608291
  8. Cecil, T 1992Lie Sphere GeometrySpringerBerlin Heidelberg New YorkzbMATHGoogle Scholar
  9. Desbrun M, Grinspun E, Schröder P (2005) Discrete Differential Geometry. SIGGRAPH Course NotesGoogle Scholar
  10. Dyn, N, Levin, D 2002Subdivision schemes in geometric modellingActa Numerica1173144zbMATHCrossRefMathSciNetGoogle Scholar
  11. Liu, Y, Pottmann, H, Wallner, J, Yang, Y-L, Wang, W 2006Geometric Modeling with Conical Meshes and Developable SurfacesACM Trans Graphics25681689Proc SIGGRAPH 2006CrossRefGoogle Scholar
  12. Martin, R, de Pont, J, Sharrock, TJ 1986Cyclide surfaces in computer aided designGregory, JA eds. The Mathematics of SurfacesClarendon PressOxford253268Google Scholar
  13. Pinkall, U, Polthier, K 1993Computing discrete minimal surfaces and their conjugatesExperiment Math21536zbMATHMathSciNetGoogle Scholar
  14. Polthier, K 2002Polyhedral surfaces of constant mean curvatureHabilitationsschriftTU BerlinGoogle Scholar
  15. Polthier K (2005) Computational aspects of discrete minimal surfaces. In Hoffman D (ed) Global Theory of Minimal Surfaces, Vol. 2. Providence, RI: Amer Math Soc Clay Math Proc 2: 65–111Google Scholar
  16. Pottmann, H, Peternell, M 1998Applications of Laguerre geometry in CAGDComputer Aided Geom Des15165186zbMATHCrossRefMathSciNetGoogle Scholar
  17. Pottmann H, Wallner J (2007) The focal geometry of circular and conical meshes. Adv Comp Math, to appearGoogle Scholar
  18. Sauer, R 1933Wackelige Kurvennetze bei einer infinitesimalen FlächenverbiegungMath Annalen108673693zbMATHCrossRefMathSciNetGoogle Scholar
  19. Sauer, R 1970DifferenzengeometrieSpringerBerlin Heidelberg New YorkzbMATHGoogle Scholar
  20. Schief W, Bobenko A, Hoffmann T (2007) On the integrability of infinitesimal and finite deformations of polyhedral surfaces. In: Bobenko A et al (eds) Basel: Birkhäuser, to appearGoogle Scholar
  21. Wang W, Wallner J, Liu Y (2006) An angle criterion for conical mesh vertices. Geometry Preprint 157, TU Wien, http://www.geometrie.tuwien.ac.at/ig/papers/tr157.pdf

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Technische Universität GrazGrazAustria

Personalised recommendations