Monatshefte für Mathematik

, Volume 152, Issue 4, pp 265–282 | Cite as

Ambient connections realising conformal Tractor holonomy

  • Stuart Armstrong
  • Thomas Leistner
Article

Abstract.

For a conformal manifold we introduce the notion of an ambient connection, an affine connection on an ambient manifold of the conformal manifold, possibly with torsion, and with conditions relating it to the conformal structure. The purpose of this construction is to realise the normal conformal Tractor holonomy as affine holonomy of such a connection. We give an example of an ambient connection for which this is the case, and which is torsion free if we start the construction with a C-space, and in addition Ricci-flat if we start with an Einstein manifold. Thus, for a C-space this example leads to an ambient metric in the weaker sense of Čap and Gover, and for an Einstein space to a Ricci-flat ambient metric in the sense of Fefferman and Graham.

2000 Mathematics Subject Classification: 53C29, 53A30 
Key words: Holonomy groups, conformal holonomy, ambient construction, C-spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong S (2005) Definite signature conformal holonomy: a complete classification. J Geom Phys, in pressGoogle Scholar
  2. Bailey, TN, Eastwood, MG, Gover, AR 1994Thomas’s structure bundle for conformal, projective and related structuresRocky Mountain J Math2411911217MATHMathSciNetCrossRefGoogle Scholar
  3. Čap, A, Gover, AR 2002Tractor calculi for parabolic geometriesTrans Amer Math Soc35415111548electronicCrossRefMathSciNetMATHGoogle Scholar
  4. Čap, A, Gover, AR 2003Standard tractors and the conformal ambient metric constructionAnn Global Anal Geom24231259CrossRefMathSciNetMATHGoogle Scholar
  5. Cartan, E 1923Les Espaces à Connexion ConformLes Annales de la Société Polonaise de Mathématiques2171202Google Scholar
  6. Eastwood MG (1996) Notes on conformal differential geometry. In: The Proceedings of the 15th Winter School on Geometry and Physics (Srní, 1995). Suppl Rendiconti del Circolo Matematico di Palermo, Serie II, 43: 57–76Google Scholar
  7. Fefferman C, Graham CR (1985) Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque No Hors Ser: 95–116Google Scholar
  8. Fefferman, C, Graham, CR 2002Q-curvature and Poincaré metricsMath Res Lett9139151MATHMathSciNetGoogle Scholar
  9. Fefferman, C, Hirachi, K 2003Ambient metric construction of Q-curvature in conformal and CR geometriesMath Res Lett10819831MATHMathSciNetGoogle Scholar
  10. Leistner, T 2006Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifoldsDifferential Geom Appl24458478MATHCrossRefMathSciNetGoogle Scholar
  11. Leitner F (2004) Normal conformal killing forms. math.DG/0406316 at http://arxiv.org
  12. Thomas, TY 1926On conformal geometryProc Nat Acad Sci12352359CrossRefMATHGoogle Scholar
  13. Thomas, TY 1932Conformal tensorsProc Nat Acad Sci18103189MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Stuart Armstrong
    • 1
  • Thomas Leistner
    • 2
  1. 1.University of OxfordOxfordUK
  2. 2.University of AdelaideSAAustralia

Personalised recommendations