Monatshefte für Mathematik

, Volume 153, Issue 2, pp 165–175 | Cite as

Group invariant Colombeau generalized functions

  • Hans Vernaeve


Colombeau generalized functions invariant under smooth (additive) one-parameter groups are characterized. This characterization is applied to generalized functions invariant under orthogonal groups of arbitrary signature, such as groups of rotations or the Lorentz group. Further, a one-dimensional Colombeau generalized function with two (real) periods is shown to be a generalized constant, when the ratio of the periods is an algebraic nonrational number. Finally, a nonstandard Colombeau generalized function invariant under standard translations is shown to be constant.

2000 Mathematics Subject Classification: 46F30, 35D05 
Key words: Colombeau generalized functions, translation invariance, rotational invariance, Lorentz invariance, generalized one-parameter groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apostol, T 1976Modular Functions and Dirichlet series in Number TheorySpringerNew YorkzbMATHGoogle Scholar
  2. Berest, YuYu 1993Group analysis of linear differential equations in distributions and the construction of fundamental solutionsDiff Eqs2917001711MathSciNetGoogle Scholar
  3. Besicovitch, AS 1934Sets of fractional dimension (IV): on rational approximation to real numbersJ London Math Soc9126131zbMATHCrossRefGoogle Scholar
  4. Colombeau, JF 1985Elementary Introduction to New Generalized FunctionsNorth HollandAmsterdamzbMATHGoogle Scholar
  5. Grosser, M, Kunzinger, M, Oberguggenberger, M, Steinbauer, R 2001Geometric Theory of Generalized Functions with Applications to General RelativityKluwerDordrechtzbMATHGoogle Scholar
  6. Ibragimov, NH eds. 1994–1996CRC Handbook of Lie Group Analysis of Differential EquationsCRC PressFloridaGoogle Scholar
  7. Konjik, S, Kunzinger, M 2006Group invariants in algebras of generalized functionsIntegral Transforms Spec Funct2–37784CrossRefMathSciNetGoogle Scholar
  8. Konjik, S, Kunzinger, M 2006Generalized group actions in a global settingJ Math Anal Appl322420436zbMATHCrossRefMathSciNetGoogle Scholar
  9. Kunzinger, M, Oberguggenberger, M 1997Symmetries of differential equations in Colombeau algebrasIbragimov, NHMahomed, FM eds. Modern Group Analysis VINew Age Int PublNew Delhi920Google Scholar
  10. Kunzinger, M, Oberguggenberger, M 2000Group analysis of differential equations and generalized functionsSIAM J Math Anal3111921213zbMATHCrossRefMathSciNetGoogle Scholar
  11. Methée, P-D 1954Sur les distributions invariantes dans le groupe des rotations de LorentzComment Math Helvetici28225269zbMATHCrossRefGoogle Scholar
  12. Oberguggenberger, M 1988Products of distributions: nonstandard methodsZ Anal Anwendungen7347365zbMATHMathSciNetGoogle Scholar
  13. Oberguggenberger, M 2004Rotationally invariant Colombeau generalized functionsDelcroix, AHasler, MMarti, JAValmorin, V eds. Nonlinear Algebraic Analysis and Applications (ICGF 2000)Cambridge ScientificCambridge227236Google Scholar
  14. Pilipović, S, Scarpalezos, D, Valmorin, V 2006Equalities in algebras of generalized functionsForum Math18789801CrossRefMathSciNetGoogle Scholar
  15. Schwartz L (1954–1955) Équations aux dérivées partielles. Séminaire Schwartz, exposé no. 7, no. 8, ParisGoogle Scholar
  16. Szmydt, Z 1977Fourier Transformation and Linear Differential EquationsD. ReidelDordrechtzbMATHGoogle Scholar
  17. Tengstrand, A 1960Distributions invariant under an orthogonal group of arbitrary signatureMath Scand8201218zbMATHMathSciNetGoogle Scholar
  18. Todorov, T 1988Colombeau’s generalized functions and nonstandard analysisStanković, BPap, EPilipović, SVladimirov, VS eds. Generalized Functions, Convergence Structures, and Their ApplicationsPlenum PressNew York327339Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.University of InnsbruckInnsbruckAustria

Personalised recommendations