Monatshefte für Mathematik

, Volume 152, Issue 2, pp 89–96

Constant angle surfaces in \( {\Bbb S}^2\times {\Bbb R} \)

  • Franki Dillen
  • Johan Fastenakels
  • Joeri Van der Veken
  • Luc Vrancken
Article

Abstract.

In this article we study surfaces in \( {\Bbb S}^2\times {\Bbb R} \) for which the unit normal makes a constant angle with the \( {\Bbb R} \)-direction. We give a complete classification for surfaces satisfying this simple geometric condition.

2000 Mathematics Subject Classification: 53B25 
Key words: Surfaces, product manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abresch, U, Rosenberg, H 2004A Hopf differential for constant mean curvature surfaces in \( {\Bbb S}^2\times {\Bbb R} \) and \( {\Bbb H}^2\times{\Bbb R} \)Acta Math193141174MATHCrossRefMathSciNetGoogle Scholar
  2. Albujer AL, Alías LJ (2005) On Calabi-Bernstein results for maximal surfaces in Lorentzian products. PreprintGoogle Scholar
  3. Alías LJ, Dajczer M, Ripoll J (2007) A Bernstein-type theorem for Riemannian manifolds with a Killing field. PreprintGoogle Scholar
  4. Daniel B (2005) Isometric immersions into \( {\Bbb S}^n\times{\Bbb R} \) and \( {\Bbb H}^n\times{\Bbb R} \) and applications to minimal surfaces. to appear in Ann Glob Anal GeomGoogle Scholar
  5. Meeks, W, Rosenberg, H 2004Stable minimal surfaces in \( M^2\times{\Bbb R} \)J Differential Geom68515534MATHMathSciNetGoogle Scholar
  6. Rosenberg, H 2002Minimal surfaces in \( M^2\times{\Bbb R} \)Illinois J Math4611771195MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Franki Dillen
    • 1
  • Johan Fastenakels
    • 1
  • Joeri Van der Veken
    • 1
  • Luc Vrancken
    • 2
  1. 1.Katholieke Universiteit LeuvenBelgium
  2. 2.Université de ValenciennesFrance

Personalised recommendations