Monatshefte für Mathematik

, Volume 149, Issue 3, pp 179–192

Discrepancy of Fractions with Divisibility Constraints

  • Emre Alkan
  • Andrew H. Ledoan
  • Marian Vâjâitu
  • Alexandru Zaharescu
Article

Abstract.

We provide bounds for the absolute discrepancy of sequences of fractions with denominators streaming in a given arithmetic progression and satisfying divisibility constraints.

2000 Mathematics Subject Classification: 11K38, 11B57, 11N25 
Key words: Discrepancy, distribution of rationals, \({\cal B}\)-free numbers, arithmetic progressions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boca, FP, Cobeli, C, Zaharescu, A 2003On the distribution of the Farey sequence with odd denominatorsMichigan Math J51557574MATHMathSciNetCrossRefGoogle Scholar
  2. Boca, FP, Gologan, RN, Zaharescu, A 2003The average length of a trajectory in a certain billiard in a flat two-torusNew York J Math9303330MATHMathSciNetGoogle Scholar
  3. Boca, FP, Gologan, RN, Zaharescu, A 2003The statistics of the trajectory of a certain billiard in a flat two-torusComm Math Phys2405373MATHMathSciNetCrossRefGoogle Scholar
  4. Davenport H (2000) Multiplicative Number Theory, 3rd edn (HL Montgomery, ed) New York: SpringerGoogle Scholar
  5. Dress, F 1999Discrépance des suites de FareyJ Théor Nombres Bordeaux11345367MATHMathSciNetGoogle Scholar
  6. Erdős, P 1966On the difference of consecutive terms of sequences defined by divisibility propertiesActa Arith12175182MathSciNetGoogle Scholar
  7. Erdős, P, Kac, M, van Kampen, ER, Wintner, A 1940Ramanujan sums and almost periodic functionsStudia Math94353MathSciNetGoogle Scholar
  8. Franel J (1924) Les suites de Farey et les problèmes des nombres premiers. Nachr Ges Wiss Göttingen, Math-Phys Kl: 198–201Google Scholar
  9. Hardy, GH, Wright, EM 1979An Introduction to the Theory of Numbers5Clarendon PressOxfordGoogle Scholar
  10. Haynes, A 2003A note on Farey fractions with odd denominatorsJ Number Theory9889104MATHMathSciNetCrossRefGoogle Scholar
  11. Haynes, A 2004The distribution of special subsets of the Farey sequenceJ Number Theory10795104MATHMathSciNetCrossRefGoogle Scholar
  12. Huxley, MN 1971The distribution of Farey points, IActa Arith18281287MATHMathSciNetGoogle Scholar
  13. Ivić, A 1985The Riemann Zeta-FunctionWileyNew YorkGoogle Scholar
  14. Kuipers, L, Niederreiter, H 1974Uniform Distribution of SequencesWileyNew YorkMATHGoogle Scholar
  15. Landau E (1924) Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel. Nachr von der Ges. der Wiss zu Göttingen, Math-Phys Kl: 202–206Google Scholar
  16. Landau E (1927) Vorlesungen über Zahlentheorie, 2. Band. Leipzig: Verlag von S. HirzelGoogle Scholar
  17. Meijer HG, Niederreiter H (1975) Equirepartition et theorie des nombres premiers. In: Rauzy G (ed) Répartition Modulo 1 Lect Notes Math 475, pp 104–112. Berlin Heidelberg New York: SpringerGoogle Scholar
  18. Montgomery H, Vaughan RC (2005) Multiplicative Number Theory: I. Classical Theory. Cambridge: Press, to appearGoogle Scholar
  19. Niederreiter, H 1973The distribution of Farey pointsMath Ann201341345MATHMathSciNetCrossRefGoogle Scholar
  20. Neville, EH 1949The structure of Farey seriesProc London Math Soc51132144MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Emre Alkan
    • 1
  • Andrew H. Ledoan
    • 1
  • Marian Vâjâitu
    • 2
  • Alexandru Zaharescu
    • 1
  1. 1.University of Illinois at Urbana-ChampaignUSA
  2. 2.Romanian AcademyBucharestRomania

Personalised recommendations