Monatshefte für Mathematik

, 149:91 | Cite as

On Maps Preserving Zero Jordan Products

  • Mikhail A. Chebotar
  • Wen-Fong Ke
  • Pjek-Hwee Lee
  • Ruibin Zhang


Let R be a ring, A = M n (R) and θ: AA a surjective additive map preserving zero Jordan products, i.e. if x,yA are such that xy + yx = 0, then θ(x)θ(y) + θ(y)θ(x) = 0. In this paper, we show that if R contains \(\frac{1}{2}\) and n ≥ 4, then θ = λϕ, where λ = θ(1) is a central element of A and ϕ: AA is a Jordan homomorphism.

2000 Mathematics Subject Classification: 15A04, 47B49 
Key words: Map preserving zero Jordan products, Jordan homomorphism, functional identity, d-free subset 


  1. Araujo, A, Jarosz, K 2003Biseparating maps between operator algebrasJ Math Anal Appl2824855zbMATHMathSciNetCrossRefGoogle Scholar
  2. Beasley, LB 1978Linear transformations on matrices: The invariance of commuting pairs of matricesLinear Multilinear Algebra6179183zbMATHMathSciNetGoogle Scholar
  3. Beidar, KI 1998On functional identities and commuting additive mappingsComm Algebra2618191850zbMATHMathSciNetGoogle Scholar
  4. Beidar, KI, Brešar, M, Chebotar, MA 2002Functional identities revised: the fractional and the strong degreeComm Algebra30935969zbMATHMathSciNetCrossRefGoogle Scholar
  5. Beidar, KI, Chang, S-C, Chebotar, MA, Fong, Y 2000On functional identities in left ideals of prime ringsComm Algebra2830413058zbMATHMathSciNetGoogle Scholar
  6. Beidar, KI, Chebotar, MA 2000On functional identities and d-free subsets of rings, IComm Algebra2839253951zbMATHMathSciNetGoogle Scholar
  7. Beidar, KI, Chebotar, MA 2000On functional identities and d-free subsets of rings, IIComm Algebra2839533972zbMATHGoogle Scholar
  8. Beidar, KI, Lin, Y-F 2004On surjective linear maps preserving commutativityProc Roy Soc Edinburgh Sect A13410231040zbMATHMathSciNetGoogle Scholar
  9. Beidar, KI, Martindale, WS,III, Mikhalev, AV 1996Rings with Generalized IdentitiesMarcel DekkerNew YorkzbMATHGoogle Scholar
  10. Beidar, KI, Mikhalev, AV, Chebotar, MA 2004Functional identities in rings and their applicationsRussian Math Surveys59423428MathSciNetCrossRefGoogle Scholar
  11. Brešar, M 1993Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappingsTrans Amer Math Soc335525546MathSciNetCrossRefzbMATHGoogle Scholar
  12. Brešar, M 2000Functional identities: a surveyContemp Math25993109Google Scholar
  13. Bjorken, JD, Drell, SD 1964Relativistic Quantum MechanicsMcGraw-HillNew YorkGoogle Scholar
  14. Brešar, M, Miers, CR 1993Commutativity preserving mappings of von Neumann algebrasCanad J Math45695708MathSciNetzbMATHGoogle Scholar
  15. Chebotar, MA, Ke, W-F, Lee, P-H 2004Maps characterized by action on zero productsPacific J Math216217228zbMATHMathSciNetCrossRefGoogle Scholar
  16. Chebotar, M, Ke, W-F, Lee, P-H 2005On maps preserving square-zero matricesJ Algebra289421445zbMATHMathSciNetCrossRefGoogle Scholar
  17. Chebotar, M, Ke, W-F, Lee, P-H 2005Maps preserving zero Jordan products on Hermitian operatorsIllinois J Math49445452zbMATHMathSciNetGoogle Scholar
  18. Chebotar, MA, Ke, W-F, Lee, P-H, Wong, N-C 2003Mappings preserving zero productsStudia Math1557794zbMATHMathSciNetCrossRefGoogle Scholar
  19. Choi, MMD, Jafarian, AA, Radjavi, H 1987Linear maps preserving commutativityLinear Algebra Appl87227242zbMATHMathSciNetCrossRefGoogle Scholar
  20. Jacobson, N 1980Basic Algebra IIFreemanSan FranciscozbMATHGoogle Scholar
  21. Lin, Y-F 2003Commutativity-preserving maps on Lie ideals of prime algebrasLinear Algebra Appl371361368zbMATHMathSciNetCrossRefGoogle Scholar
  22. Marcus, M, Moyls, BN 1959Linear transformations on algebras of matricesCanad J Math116166zbMATHMathSciNetGoogle Scholar
  23. Miers, CR 1988Commutativity preserving maps of factorsCanad J Math40248256zbMATHMathSciNetGoogle Scholar
  24. Omladič, M 1986On operators preserving commutativityJ Funct Anal66105122MathSciNetCrossRefzbMATHGoogle Scholar
  25. Omladič, M, Radjavi, H, Šemrl, P 2001Preserving commutativityJ Pure Appl Algebra156309328MathSciNetCrossRefzbMATHGoogle Scholar
  26. Pierce, S, Watkins, W 1978Invariants of linear maps on matrix algebrasLinear Multilinear Algebra6185200zbMATHMathSciNetGoogle Scholar
  27. Scholz, E, Timmermann, W 1993Local derivations, automorphisms and commutativity preserving maps on L +(D)Publ Res Inst Math Sci29977995zbMATHMathSciNetGoogle Scholar
  28. Šemrl, P 1993Linear mappings preserving square-zero matricesBull Austral Math Soc48365370MathSciNetzbMATHCrossRefGoogle Scholar
  29. Watkins, W 1976Linear maps that preserve commuting pairs of matricesLinear Algebra Appl142935zbMATHMathSciNetCrossRefGoogle Scholar
  30. Wolff, M 1994Disjointness preserving operators on C *-algebrasArch Math62248253zbMATHMathSciNetCrossRefGoogle Scholar
  31. Wong, WJ 1980Maps on simple algebras preserving zero products. I: The associative casePacific J Math89229247zbMATHMathSciNetGoogle Scholar
  32. Wong, WJ 1981Maps on simple algebras preserving zero products. II: Lie algebras of linear typePacific J Math92469487zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mikhail A. Chebotar
    • 1
  • Wen-Fong Ke
    • 2
  • Pjek-Hwee Lee
    • 3
  • Ruibin Zhang
    • 4
  1. 1.Southern Taiwan University of TechnologyYung-KangTaiwan
  2. 2.National Cheng Kung UniversityTainanTaiwan
  3. 3.National Taiwan UniversityTaipeiTaiwan
  4. 4.University of SydneyAustralia

Personalised recommendations