Advertisement

Monatshefte für Mathematik

, Volume 146, Issue 3, pp 203–226 | Cite as

Topological Structures in Colombeau Algebras: Investigation of the Duals of \({\cal G}_{{\rm c}}(\Omega)\), \({\cal G}(\Omega)\) and \({\cal G}_{{\cal S}}({\Bbb R}^n)\)

  • Claudia Garetto
Article

Abstract.

We study the topological duals of the Colombeau algebras \({\cal G}_{{\rm c}}(\Omega)\), \({\cal G}(\Omega)\) and \({\cal G}_{{\cal S}}({\Bbb R}^n)\), discussing some continuous embeddings and the properties of generalized delta functionals.

2000 Mathematics Subject Classifications: 46F30, 13J99 
Key words: Algebras of generalized functions, duality theory, generalization of the Dirac measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biagioni, H, Oberguggenberger, M 1992Generalized solutions to the Korteweg-de Vries and the regularized long-wave equations.SIAM J Math Anal23923940CrossRefGoogle Scholar
  2. Colombeau JF (1985) Elementary Introduction to New Generalized Functions. Berlin Heidelberg New York: ElsevierGoogle Scholar
  3. Colombeau JF (1992) Multiplication of Distributions. A Tool in Mathematics, Numerical Engineering and Theoretical Physics. Lect Notes Math 1532. Berlin Heidelberg New York: SpringerGoogle Scholar
  4. Garetto, C 2004Pseudo-differential operators in algebras of generalized functions and global hypoellipticity.Acta Appl Math80123174CrossRefGoogle Scholar
  5. Garetto C (2005) Topological structures in Colombeau algebras: topological \(\tilde{{\Bbb C}}\)-modules and duality theory. Acta Appl Math (to appear)Google Scholar
  6. Garetto C (2004) Pseudodifferential Operators with Generalized Symbols and Regularity Theory. PhD Thesis, University of TorinoGoogle Scholar
  7. Garetto C, Gramchev T, Oberguggenberger M (2003) Pseudodifferential operators with generalized symbols and regularity theory. Preprint 8-2003, University of Innsbruck (http://techmath.uibk.ac.at/mathematik/publikationen/)Google Scholar
  8. Garetto C, Hörmann G (2005) Microlocal analysis of generalized functions: pseudodifferential techniques and propagation of singularities. Proc Edinburgh Math Soc (to appear)Google Scholar
  9. Grosser M, Kunzinger M, Oberguggenberger M, Steinbauer R (2001) Geometric Theory of Generalized Functions. Dordrecht: KluwerGoogle Scholar
  10. Hörmann, G 2004First-order hyperbolic pseudodifferential equations with generalized symbols.J Math Anal Appl2934056CrossRefGoogle Scholar
  11. Hörmann, G, Oberguggenberger, M 2004Elliptic regularity and solvability for partial differential equations with Colombeau coefficients.Electronic J Diff Eqns2004130Google Scholar
  12. Kashiwara M, Shapira P (1990) Sheaves on Manifolds. Berlin Heidelberg New York: SpringerGoogle Scholar
  13. Nedeljkov M, Pilipović S, Scarpalézos D (1998) The Linear Theory of Colombeau Generalized Functions. Pitman Res Notes Math 385. Harlow: LongmanGoogle Scholar
  14. Oberguggenberger M (1992) Multiplication of Distributions and Applications to Partial Differential Equations. Pitman Res Notes Math 259. Harlow: LongmanGoogle Scholar
  15. Oberguggenberger, M, Kunzinger, M 1999Characterization of Colombeau generalized functions by their point values.Math Nachr203147157Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • Claudia Garetto
    • 1
  1. 1.Università di TorinoItalia

Personalised recommendations