Skip to main content
Log in

Heterodimers of metal nanoparticles: synthesis, properties, and biological applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Heterodimers of metal nanoparticles consist of two metals, come in many sizes and adopt various shapes. They offer unique properties due to the presence of two metals and have the extraordinary flexibility needed to serve as a multipurpose platform for diverse applications in areas including photonics, sensing, and catalysis. Heterodimer nanoparticles contain different metals that contribute to extraordinary surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and catalytic properties. These properties make them versatile molecules that can be used in intracellular imaging, as antibacterial agents, as photocatalytic and biological macromolecules and for the detection of chemical substances. Moreover, heterodimer nanoparticles are composed of the two metals within larger molecules that provide more choices for modification and application. In this review, we briefly summarize the lesser-known aspects of heterodimers, including some of their properties, and present concrete examples of recent progress in synthesis and applications. This review provides a perspective on achievements and suggests a framework for future research with a focus on the synthesis and application of heterodimers. We also explore the possible applications of heterodimer nanoparticles based on their unique properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brongersma ML, Shalaev VM (2010) Applied physics. The case for Plasmonics. Science 328(5977):440–441

    Article  CAS  PubMed  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  PubMed  Google Scholar 

  3. Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW (2019) Growth of spherical gold satellites on the surface of Au@Ag@SiO2 core shell nanostructures used for an ultrasensitive SERS immunoassay of alpha-fetoprotein. ACS Appl Mater Interfaces 11(3):3617–3626

    Article  CAS  PubMed  Google Scholar 

  4. Qi Y, Zhao J, Weng GJ, Li JJ, Li X, Zhu J, Zhao JW (2018) A colorimetric/SERS dual-mode sensing method for the detection of mercury(II) based on rhodanine-stabilized gold nanobipyramids. J Mater Chem C 6(45):12283–12293

    Article  CAS  Google Scholar 

  5. Aygun A et al (2020) Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal 178:112970

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J.K., Zhu J., Li J.J., Zhao J.W., Switching the plasmon coupling of fractional hollow AuAg nanobox by asymmetrical etching of the inner Ag core. Journal of Physics D-Applied Physics, 2019. 52(25)

  7. Zhang F, Wu N, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW (2018) Au@AuAg yolk-shell triangular nanoplates with controlled interior gap for the improved surface-enhanced Raman scattering of rhodamine 6G. Sensors and Actuators B-Chemical 271:174–182

    Article  CAS  Google Scholar 

  8. Kuriakose A, Naidu GN, Swathi RS (2020) Plasmonic resonances in Ag-Au nanosphere heterodimers: how accurate are the approximate analytical descriptions? J Phys Chem C 124(25):13858–13871

    Article  CAS  Google Scholar 

  9. Pandeya P, Aikens CM (2020) Theoretical analysis of optical absorption spectra of parallel nanowire dimers and dolmen trimers. J Phys Chem C 124(24):13495–13507

    Article  CAS  Google Scholar 

  10. Shin TH, Choi Y, Kim S, Cheon J (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44(14):4501–4516

    Article  CAS  PubMed  Google Scholar 

  11. Lopes G, Vargas JM, Sharma SK, Béron F, Pirota KR, Knobel M, Rettori C, Zysler RD (2010) Ag-Fe3O4 dimer colloidal nanoparticles: synthesis and enhancement of magnetic properties. J Phys Chem C 114(22):10148–10152

    Article  CAS  Google Scholar 

  12. Gao JH, Gu HW, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107

    Article  CAS  PubMed  Google Scholar 

  13. He CB, Liu DM, Lin WB (2015) Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem Rev 115(19):11079–11108

    Article  CAS  PubMed  Google Scholar 

  14. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422

    Article  CAS  PubMed  Google Scholar 

  15. Yoo D, Lee JH, Shin TH, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44(10):863–874

    Article  CAS  PubMed  Google Scholar 

  16. Gao, J.H., et al., Intracellular spatial control of fluorescent magnetic nanoparticles. Journal of the American Chemical Society, 2008. 130(12): p. 3710−+

  17. Sotiriou GA, Hirt AM, Lozach PY, Teleki A, Krumeich F, Pratsinis SE (2011) Hybrid, silica-coated, Janus-Like Plasmonic-Magnetic Nanoparticles. Chemistry of Materials 23(7):1985–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews 112(11):5818–5878

    Article  CAS  PubMed  Google Scholar 

  19. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu M, Guo F, Wang J, Tan F, Li N (2016) A pH-driven and photoresponsive nanocarrier: remotely-controlled by near-infrared light for stepwise antitumor treatment. Biomaterials 79:25–35

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Lee C, Law WC, Zhu D, Liu M, Jeon M, Kim J, Prasad PN, Kim C, Swihart MT (2013) Au-Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett 13(9):4333–4339

    Article  CAS  PubMed  Google Scholar 

  22. Ye X, Chen J, Diroll BT, Murray CB (2013) Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. Nano Lett 13(3):1291–1297

    Article  CAS  PubMed  Google Scholar 

  23. Kiani A, Esquevin A, Lepareur N, Bourguet P, le Jeune F, Gauvrit JY (2016) Main applications of hybrid PET-MRI contrast agents: a review. Contrast Media Mol Imaging 11(2):92–98

    Article  CAS  PubMed  Google Scholar 

  24. Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y (2016) Radiolabeled theranostics: magnetic and gold nanoparticles. Bioimpacts 6(3):169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu K, Ju Y, Xu J, Yang Z, Gao S, Hou Y (2018) Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res 51(2):404–413

    Article  CAS  PubMed  Google Scholar 

  26. Cui JB et al (2018) Fluorine grafted Cu7S4-au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. J Am Chem Soc 140(18):5890–5894

    Article  CAS  PubMed  Google Scholar 

  27. Pradhan S, Ghosh D, Chen SW (2009) Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. ACS Appl Mater Interfaces 1(9):2060–2065

    Article  CAS  PubMed  Google Scholar 

  28. Halas, N.J., Plasmonics: an emerging field fostered by nano letters. Nano Letters, 2010. 10(10): p. 3816–3822

  29. Chen, G., et al., Measuring ensemble-averaged surface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. Journal of the American Chemical Society, 2010. 132(11): p. 3644−+

  30. Li WY et al (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9(1):485–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik GV, Nordlander P, Halas NJ (2018) Wavelength-dependent optical force imaging of bimetallic Al-Au heterodimers. Nano Lett 18(3):2040–2046

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Foley JJ IV, Peng S, Li Z, Gray SK (2013) Interfaced metal heterodimers in the quantum size regime. Nano Lett 13(8):3958–3964

    Article  CAS  PubMed  Google Scholar 

  33. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2):819–832

    Article  CAS  PubMed  Google Scholar 

  34. Pena-Rodriguez O et al (2011) Enhanced fano resonance in asymmetrical Au:Ag heterodimers. J Phys Chem C 115(14):6410–6414

    Article  CAS  Google Scholar 

  35. Sheikholeslami S, Jun YW, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10(7):2655–2660

    Article  CAS  PubMed  Google Scholar 

  36. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41(7):2943–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B (2019) Gold nanoparticles in cancer treatment. Mol Pharm 16(1):1–23

    Article  CAS  PubMed  Google Scholar 

  38. Hussain, S. and A.K. Pal, Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique. Mesoscopic, Nanoscopic, and Macroscopic Materials, 2008. 1063: p. 98−+

  39. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  40. Khodashenas B, Ghorbani HR (2019) Synthesis of silver nanoparticles with different shapes. Arab J Chem 12(8):1823–1838

    Article  CAS  Google Scholar 

  41. Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 5(3):2042–2050

    Article  CAS  PubMed  Google Scholar 

  42. Lee SU, Hong JW, Choi SI, Han SW (2014) Universal sulfide-assisted synthesis of M-Ag heterodimers (M = Pd, Au, Pt) as efficient platforms for fabricating metal-semiconductor heteronanostructures. J Am Chem Soc 136(14):5221–5224

    Article  CAS  PubMed  Google Scholar 

  43. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5(5):449–493

    Article  CAS  Google Scholar 

  44. Xu LG et al (2016) Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications. Mater Today 19(10):595–606

    Article  CAS  Google Scholar 

  45. Kim D, Resasco J, Yu Y, Asiri AM, Yang P (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun 5

  46. Huang C, Yang X, Yang H, Huang P, Song H, Liao S (2014) High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation. Appl Surf Sci 315:138–143

    Article  CAS  Google Scholar 

  47. Buck MR, Bondi JF, Schaak RE (2012) A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat Chem 4(1):37–44

    Article  CAS  Google Scholar 

  48. Muraca D, Odio OF, Reguera E, Pirota KR (2013) One step chemical synthesis of Ag-Fe3O4 heterodimer nanoparticles: optical, structure, and magnetic properties. IEEE Trans Magn 49(8):4606–4609

    Article  CAS  Google Scholar 

  49. Feyen M, Weidenthaler C, Schüth F, Lu AH (2010) Regioselectively controlled synthesis of colloidal mushroom nanostructures and their hollow derivatives. J Am Chem Soc 132(19):6791–6799

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Zhang F, Dong WF, Song JF, Huo QS, Sun HB (2011) Magnetic-mesoporous Janus nanoparticles. Chem Commun (Camb) 47(4):1225–1227

    Article  CAS  Google Scholar 

  51. Xia YN et al (2017) Seed-mediated growth of colloidal metal nanocrystals. Angewandte Chemie-International Edition 56(1):60–95

    Article  CAS  PubMed  Google Scholar 

  52. Ohnuma, A., et al., A facile synthesis of asymmetric hybrid colloidal particles. Journal of the American Chemical Society, 2009. 131(4): p. 1352−+

  53. Ohnuma A, Cho EC, Jiang M, Ohtani B, Xia Y (2009) Metal-polymer hybrid colloidal particles with an eccentric structure. Langmuir 25(24):13880–13887

    Article  CAS  PubMed  Google Scholar 

  54. Qiu JC et al (2019) General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth. Nano Lett 19(9):6703–6708

    Article  CAS  PubMed  Google Scholar 

  55. Foley JJ et al (2014) Interfaced metal heterodimers in the quantum size regime. Abstr Pap Am Chem Soc 247

  56. Peng S, Lee Y, Wang C, Yin H, Dai S, Sun S (2008) A facile synthesis of monodisperse au nanoparticles and their catalysis of CO oxidation. Nano Res 1(3):229–234

    Article  CAS  Google Scholar 

  57. Sun YG (2013) Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem Soc Rev 42(7):2497–2511

    Article  CAS  PubMed  Google Scholar 

  58. Zhang S, Jiang G, Filsinger GT, Wu L, Zhu H, Lee J, Wu Z, Sun S (2014) Halide ion-mediated growth of single crystalline Fe nanoparticles. Nanoscale 6(9):4852–4856

    Article  CAS  PubMed  Google Scholar 

  59. Jiang GM et al (2016) Controlled synthesis of Au-Fe heterodimer nanoparticles and their conversion into Au-Fe3O4 heterostructured nanoparticles. Nanoscale 8(41):17947–17952

    Article  CAS  PubMed  Google Scholar 

  60. Sheng Y, Xue JM (2012) Synthesis and properties of Au-Fe3O4 heterostructured nanoparticles. J Colloid Interface Sci 374:96–101

    Article  CAS  PubMed  Google Scholar 

  61. Ma W, Sun M, Xu L, Wang L, Kuang H, Xu C (2013) A SERS active gold nanostar dimer for mercury ion detection. Chem Commun 49(44):4989–4991

    Article  CAS  Google Scholar 

  62. Cha H, Yoon JH, Yoon S (2014) Probing quantum plasmon coupling using gold nanoparticle dimers with tunable Interparticle distances down to the subnanometer range. ACS Nano 8(8):8554–8563

    Article  CAS  PubMed  Google Scholar 

  63. Wang LB et al (2012) Dynamic nanoparticle assemblies. Acc Chem Res 45(11):1916–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McConnell WP, Novak JP, Brousseau LC, Fuierer RR, Tenent RC, Feldheim DL (2000) Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays. J Phys Chem B 104(38):8925–8930

    Article  CAS  Google Scholar 

  65. Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I (2005) Measurement of the conductance of single conjugated molecules. Nature 436(7051):677–680

    Article  CAS  PubMed  Google Scholar 

  66. Ying JW, Sobransingh DR, Xu GL, Kaifer AE, Ren T (2005) Sulfide-capped wire-like metallaynes as connectors for Au nanoparticle assemblies. Chem Commun 3:357–359

    Article  Google Scholar 

  67. Kuang H, Ma W, Xu L, Wang L, Xu C (2013) Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications. Acc Chem Res 46(11):2341–2354

    Article  CAS  PubMed  Google Scholar 

  68. Tan LH, Xing H, Chen H, Lu Y (2013) Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly. J Am Chem Soc 135(47):17675–17678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu Z, Xu L, Zhu Y, Ma W, Kuang H, Wang L, Xu C (2012) Chirality based sensor for bisphenol A detection. Chem Commun 48(46):5760–5762

    Article  CAS  Google Scholar 

  70. Wu XL et al (2013) Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J Am Chem Soc 135(49):18629–18636

    Article  CAS  PubMed  Google Scholar 

  71. Zhao Y, Xu L, Ma W, Wang L, Kuang H, Xu C, Kotov NA (2014) Shell-engineered chiroplasmonic assemblies of nanoparticles for Zeptomolar DNA detection. Nano Lett 14(7):3908–3913

    Article  CAS  PubMed  Google Scholar 

  72. Li ZT et al (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134(7):3322–3325

    Article  CAS  PubMed  Google Scholar 

  73. Kluenker M, Connolly BM, Marolf DM, Nawaz Tahir M, Korschelt K, Simon P, Köhler U, Plana-Ruiz S, Barton B, Panthöfer M, Kolb U, Tremel W (2018) Controlling the morphology of Au-Pd heterodimer nanoparticles by surface ligands. Inorg Chem 57(21):13640–13652

    Article  CAS  PubMed  Google Scholar 

  74. Mosaiab T, Jeong CJ, Shin GJ, Choi KH, Lee SK, Lee I, in I, Park SY (2013) Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Materials Science & Engineering C-Materials for Biological Applications 33(7):3786–3794

    Article  CAS  Google Scholar 

  75. Fruhnert M, Kretschmer F, Geiss R, Perevyazko I, Cialla-May D, Steinert M, Janunts N, Sivun D, Hoeppener S, Hager MD, Pertsch T, Schubert US, Rockstuhl C (2015) Synthesis, separation, and hypermethod characterization of gold nanoparticle dimers connected by a rigid rod linker. J Phys Chem C 119(31):17809–17817

    Article  CAS  Google Scholar 

  76. Cheng L, Song J, Yin J, Duan H (2011) Self-assembled plasmonic dimers of amphiphilic gold nanocrystals. J Phys Chem Lett 2(17):2258–2262

    Article  CAS  Google Scholar 

  77. Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia RA (2013) Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett 13(12):6287–6291

    Article  CAS  PubMed  Google Scholar 

  78. Hao CL et al (2014) Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response. Small 10(9):1805–1812

    Article  CAS  PubMed  Google Scholar 

  79. Hu, A., Peng P., Alarifi H., Zhang X.Y., Guo J.Y., Zhou Y., Duley W.W., Femtosecond laser welded nanostructures and plasmonic devices. Journal of Laser Applications, 2012. 24(4)

  80. Cha SH, Park Y, Han JW, Kim K, Kim HS, Jang HL, Cho S (2016) Cold welding of gold nanoparticles on mica substrate: self-adjustment and enhanced diffusion. Sci Rep 6

  81. Hu, A., Guo J.Y., Alarifi H., Patane G., Zhou Y., Compagnini G., Xu C.X., Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl Phys Lett, 2010. 97(15)

  82. Dai, S.W., et al., Laser-induced single point nanowelding of silver nanowires. Appl Phys Lett, 2016. 108(12)

  83. Xu XH et al (2018) Investigation of laser-induced inter-welding between Au and Ag nanoparticles and the plasmonic properties of welded dimers. Nanoscale 10(48):23050–23058

    Article  CAS  PubMed  Google Scholar 

  84. Lee I, Han SW, Kim K (2001) Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 18:1782–1783

    Article  Google Scholar 

  85. Peng ZQ et al (2006) Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution. J Phys Chem B 110(6):2549–2554

    Article  CAS  PubMed  Google Scholar 

  86. Chen YT, Wang CY, Hong YJ, Kang YT, Lai SE, Chang P, Yew TR (2014) Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv 4(60):31652–31656

    Article  CAS  Google Scholar 

  87. Zheng HM et al (2012) Electron beam manipulation of nanoparticles. Nano Lett 12(11):5644–5648

    Article  CAS  PubMed  Google Scholar 

  88. Liu YZ, Sun YG (2015) Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles. Nanoscale 7(32):13687–13693

    Article  CAS  PubMed  Google Scholar 

  89. Salmon AR, Kleemann ME, Huang J, Deacon WM, Carnegie C, Kamp M, de Nijs B, Demetriadou A, Baumberg JJ (2020) Light-induced coalescence of plasmonic dimers and clusters. ACS Nano 14(4):4982–4987

    Article  CAS  PubMed  Google Scholar 

  90. Camden JP, Dieringer JA, Zhao J, van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41(12):1653–1661

    Article  CAS  PubMed  Google Scholar 

  91. Zohar N, Haran G (2014) Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles. Langmuir 30(26):7919–7927

    Article  CAS  PubMed  Google Scholar 

  92. Gschneidtner TA, Lerch S, Olsén E, Wen X, Liu ACY, Stolaś A, Etheridge J, Olsson E, Moth-Poulsen K (2020) Constructing a library of metal and metal-oxide nanoparticle heterodimers through colloidal assembly. Nanoscale 12(20):11297–11305

    Article  CAS  PubMed  Google Scholar 

  93. Lombardi A, Grzelczak MP, Crut A, Maioli P, Pastoriza-Santos I, Liz-Marzán LM, del Fatti N, Vallée F (2013) Optical response of individual Au-Ag@SiO2 heterodimers. ACS Nano 7(3):2522–2531

    Article  CAS  PubMed  Google Scholar 

  94. Wang ST, Yan JC, Chen L (2005) Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates. Mater Lett 59(11):1383–1386

    Article  CAS  Google Scholar 

  95. Gschneidtner TA, Fernandez YAD, Syrenova S, Westerlund F, Langhammer C, Moth-Poulsen K (2014) A versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers. Langmuir 30(11):3041–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG (2019) The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 119(8):4819–4880

    Article  CAS  PubMed  Google Scholar 

  97. Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan ST, Yang JA, Chernak DJ, Huang J (2010) The many faces of gold nanorods. J Phys Chem Lett 1(19):2867–2875

    Article  CAS  Google Scholar 

  98. Mourdikoudis S, Liz-Marzan LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25(9):1465–1476

    Article  CAS  Google Scholar 

  99. Wang CW et al (2015) Polyethylenimine- interlayered core-shell-satellite 3D magnetic microspheres as versatile SERS substrates. Nanoscale 7(44):18694–18707

    Article  CAS  PubMed  Google Scholar 

  100. Sun ZL et al (2016) Multifunctional Fe3O4@SiO2-Au satellite structured SERS probe for charge selective detection of food dyes. ACS Appl Mater Interfaces 8(5):3056–3062

    Article  CAS  PubMed  Google Scholar 

  101. Pramod P, Thomas KG (2008) Plasmon coupling in dimers of au nanorods. Adv Mater 20(22):4300–4305

    Article  CAS  Google Scholar 

  102. Tan SF, Wu L, Yang JKW, Bai P, Bosman M, Nijhuis CA (2014) Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343(6178):1496–1499

    Article  CAS  PubMed  Google Scholar 

  103. Yoon, J.H., Selbach F., Langolf L., Schlücker S., Ideal dimers of gold nanospheres for precision plasmonics: synthesis and characterization at the single-particle level for identification of higher order modes. Small, 2018. 14(4)

  104. Kastilani R, Wong R, Pozzo LD (2018) Efficient electrosteric assembly of nanoparticle heterodimers and linear heteroassemblies. Langmuir 34(3):826–836

    Article  CAS  PubMed  Google Scholar 

  105. Wang X, Li G, Chen T, Yang M, Zhang Z, Wu T, Chen H (2008) Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett 8(9):2643–2647

    Article  CAS  PubMed  Google Scholar 

  106. Braun GB, Lee SJ, Laurence T, Fera N, Fabris L, Bazan GC, Moskovits M, Reich NO (2009) Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion. J Phys Chem C 113(31):13622–13629

    Article  CAS  Google Scholar 

  107. Chen, G., et al., High-purity separation of gold nanoparticle dimers and trimers. Journal of the American Chemical Society, 2009. 131(12): p. 4218−+

  108. Zhang ML et al (2014) Wafer-scale synthesis of monodisperse synthetic magnetic multilayer nanorods. Nano Lett 14(1):333–338

    Article  PubMed  Google Scholar 

  109. Simeone FC, Albonetti C, Cavallini M (2009) Progress in micro- and nanopatterning via electrochemical lithography. J Phys Chem C 113(44):18987–18994

    Article  CAS  Google Scholar 

  110. Yu ZN, Chou SY (2004) Triangular profile imprint molds in nanograting fabrication. Nano Lett 4(2):341–344

    Article  CAS  Google Scholar 

  111. Zhang ML et al (2015) High-density 2D Homo- and hetero- plasmonic dimers with universal Sub-10-nm gaps. ACS Nano 9(9):9331–9339

    Article  CAS  PubMed  Google Scholar 

  112. Rao CC et al (2015) Tunable optical activity of plasmonic dimers assembled by DNA origami. Nanoscale 7(20):9147–9152

    Article  CAS  PubMed  Google Scholar 

  113. Zhang C, Zhao H, Zhou L, Schlather AE, Dong L, McClain MJ, Swearer DF, Nordlander P, Halas NJ (2016) Al-Pd Nanodisk heterodimers as antenna-reactor photocatalysts. Nano Lett 16(10):6677–6682

    Article  CAS  PubMed  Google Scholar 

  114. Zhao XY et al (2017) Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography. ACS Appl Mater Interfaces 9(8):7710–7716

    Article  CAS  PubMed  Google Scholar 

  115. Theiss J, Pavaskar P, Echternach PM, Muller RE, Cronin SB (2010) Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett 10(8):2749–2754

    Article  CAS  PubMed  Google Scholar 

  116. Zhu WQ et al (2011) Lithographically fabricated optical antennas with gaps well below 10 nm. Small 7(13):1761–1766

    Article  CAS  PubMed  Google Scholar 

  117. Liu, J., Chen C., Yang G., Chen Y., Yang C.F., Effect of the fabrication parameters of the nanosphere lithography method on the properties of the deposited Au-Ag nanoparticle arrays. Materials, 2017. 10(4)

  118. Liu J, Cai H, Kong L, Zhu X (2014) Effect of chromium interlayer thickness on optical properties of Au-Ag nanoparticle array. J Nanomater 2014:1–9

    CAS  Google Scholar 

  119. Hooshmand N, O’Neil D, Asiri AM, el-Sayed M (2014) Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: a DDA simulation. J Phys Chem A 118(37):8338–8344

    Article  CAS  PubMed  Google Scholar 

  120. Thacker VV, Herrmann LO, Sigle DO, Zhang T, Liedl T, Baumberg JJ, Keyser UF (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 5

  121. Luo DB et al (2020) Optical properties of Au-Ag nanosphere dimer: influence of interparticle spacing. Opt Commun 458:124746

    Article  CAS  Google Scholar 

  122. Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close encounters between two nanoshells. Nano Lett 8(4):1212–1218

    Article  CAS  PubMed  Google Scholar 

  123. Oubre C, Nordlander P (2005) Finite-difference time-domain studies of the optical properties of nanoshell dimers. J Phys Chem B 109(20):10042–10051

    Article  CAS  PubMed  Google Scholar 

  124. Jonnalagadda M, Prasad VB, Raghu AV (2021) Synthesis of composite nanopowder through Mn doped ZnS-CdS systems and its structural, optical properties. J Mol Struct 1230:129875

    Article  CAS  Google Scholar 

  125. Camargo PHC et al (2009) Isolating and probing the hot spot formed between two silver nanocubes. Angewandte Chemie-International Edition 48(12):2180–2184

    Article  CAS  PubMed  Google Scholar 

  126. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5(8):1569–1574

    Article  CAS  PubMed  Google Scholar 

  127. Tian, Y.Y., et al., Plasmonic heterodimers with binding site-dependent hot spot for surface-enhanced Raman scattering. Small, 2018. 14(24)

  128. Zhang, Z.L., et al., Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers. J Appl Phys, 2013. 113(3)

  129. Li YL et al (2019) Synthesis and evaluation of the SERS effect of Fe3O4-Ag Janus composite materials for separable, highly sensitive substrates. RSC Adv 9(6):2877–2884

    Article  CAS  Google Scholar 

  130. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9(1):60–67

    Article  CAS  PubMed  Google Scholar 

  131. Kumar, G. and R.K. Soni, Bimetallic Ag-Au alloy nanocubes for SERS based sensitive detection of explosive molecules. Nanotechnology, 2020. 31(50)

  132. Langhammer, C., B. Kasemo, and I. Zoric, Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J Chem Phys, 2007. 126(19)

  133. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  PubMed  Google Scholar 

  134. Xia HQ et al (2011) Synthesis and characterization of Fe3O4@C@Ag nanocomposites and their antibacterial performance. Appl Surf Sci 257(22):9397–9402

    Article  CAS  Google Scholar 

  135. Yong CY et al (2018) Recyclable magnetite-silver heterodimer nanocomposites with durable antibacterial performance. Bioactive Materials 3(1):80–86

    Article  PubMed  Google Scholar 

  136. Kannan, K., Radhika D., Reddy K.R., Raghu A.V., Sadadivuni K., Palani G., Gurushankar K., Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Express, 2021. 2(1)

  137. Zhu J, Zhang B, Tian J, Wang J, Chong Y, Wang X, Deng Y, Tang M, Li Y, Ge C, Pan Y, Gu H (2015) Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging. Nanoscale 7(8):3392–3395

    Article  CAS  PubMed  Google Scholar 

  138. Zeng JB et al (2019) Direct synthesis of water-dispersible magnetic/plasmonic heteronanostructures for multimodality biomedical imaging. Nano Lett 19(5):3011–3018

    Article  CAS  PubMed  Google Scholar 

  139. Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond) 3(4):567–578

    Article  CAS  Google Scholar 

  140. Somorjai GA, Park JY (2008) Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem Soc Rev 37(10):2155–2162

    Article  CAS  PubMed  Google Scholar 

  141. Pinchuk A, von Plessen G, Kreibig U (2004) Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. Journal of Physics D-Applied Physics 37(22):3133–3139

    Article  CAS  Google Scholar 

  142. Byeon JH, Kim YW (2014) Au-TiO2 nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity. ACS Appl Mater Interfaces 6(2):763–767

    Article  CAS  PubMed  Google Scholar 

  143. Liu P, Song K, Zhang D, Liu C (2012) A comparative theoretical study of the catalytic activities of Au (2) (−) and AuAg- dimers for CO oxidation. J Mol Model 18(5):1809–1818

    Article  CAS  PubMed  Google Scholar 

  144. Patarroyo J, Delgado JA, Merkoçi F, Genç A, Sauthier G, Llorca J, Arbiol J, Bastus NG, Godard C, Claver C, Puntes V (2019) Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Sci Rep 9:18776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fu P, Sun M, Xu L, Wu X, Liu L, Kuang H, Song S, Xu C (2016) A self-assembled chiral-aptasensor for ATP activity detection. Nanoscale 8(32):15008–15015

    Article  CAS  PubMed  Google Scholar 

  146. Das P, Borthakur P, Boruah PK, Das MR (2019) Peroxidase mimic activity of Au-Ag/L-Cys-rGO nanozyme toward detection of Cr(VI) ion in water: role of 3,3 ',5,5 '-tetramethylbenzidine adsorption. Journal of Chemical and Engineering Data 64(11):4977–4990

    Article  CAS  Google Scholar 

  147. Wu XL et al (2016) SERS encoded nanoparticle heterodimers for the ultrasensitive detection of folic acid. Biosens Bioelectron 75:55–58

    Article  CAS  PubMed  Google Scholar 

  148. Jiang, N.J., T.F. Zhu, and Y.J. Hu, Competitive aptasensor with gold nanoparticle dimers and magnetite nanoparticles for SERS-based determination of thrombin. Microchim Acta, 2019. 186(12)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant No. 61675162 and Basic Research Program of Xi’an Jiaotong University (xzy022020042). Reproduced from Ref. https://doi.org/10.1039/D0NR02787A and DOIhttps://doi.org/10.1039/c8nr07718e with permission from the Royal Society of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-wu Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Gf., Zhu, J., Weng, Gj. et al. Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Microchim Acta 188, 345 (2021). https://doi.org/10.1007/s00604-021-05002-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05002-w

Keywords

Navigation