Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Carbon nanoparticles derived from carbon soot as a matrix for SALDI-MS analysis


Carbon nanoparticles (NPs) from the incomplete combustion of a candle were used as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The washed carbon soot NPs (WCS NPs, ~48 nm) exhibit higher laser desorption/ionization efficiency and less background compared with other common metal and carbon matrices. WCS NPs present good reproducibility and high sensitivity in analyzing a wide range of molecules in both positive and negative ionization mode in SALDI-MS. The detection limit of glucose is 1 pmol with WCS NPs as matrix. WCS NPs can be used to quantitatively determine urine glucose, visualize latent fingerprint and image it with SALDI-MS. The UV absorption of WCS NPs and MS spectra analyzed with WCS NPs matrix remain the same after 10 months storage, indicating the good stability of WCS NPs as matrix.

Schematic representation of carbon nanoparticles derived from carbon soot and its application as matrix in SALDI-MS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Chiang CK, Chen WT, Chang HT (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40(3):1269–1281. https://doi.org/10.1039/c0cs00050g

  2. 2.

    Abdelhamid HN (2019) Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Microchim Acta 186(10):682. https://doi.org/10.1007/s00604-019-3770-5

  3. 3.

    Guinan TM, Kirkbride P, Della Vedova CB, Kershaw SG, Kobus H, Voelcker NH (2015) Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles. Analyst 140(23):7926–7933. https://doi.org/10.1039/c5an01754h

  4. 4.

    Guo Z, Ganawi AAA, Liu Q, He L (2006) Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal Bioanal Chem 384:584–592. https://doi.org/10.1007/s00216-005-0125-3

  5. 5.

    Guinan T, Kirkbride P, Pigou PE, Ronci M, Kobus H, Voelcker NH (2015) Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrom Rev 34(6):627–640. https://doi.org/10.1002/mas.21431

  6. 6.

    Abdelhamid HN (2018) Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185(3):200. https://doi.org/10.1007/s00604-018-2687-8

  7. 7.

    Law KP, Larkin JR (2011) Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem 399(8):2597–2622. https://doi.org/10.1007/s00216-010-4063-3

  8. 8.

    Wang J, Liu I, Liang Y, Jiang G (2016) Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 408:2861–2873. https://doi.org/10.1007/s00216-015-9255-4

  9. 9.

    Li X, Xu G, Zhang H, Liu S, Niu H, Peng J, Wu J, Wu R (2017) A homogeneous carbon nanosphere film-spot: for highly efficient laser desorption/ionization of small biomolecules. Carbon 121:343–352. https://doi.org/10.1016/j.carbon.2017.05.099

  10. 10.

    Shih Y-H, Chen J-H, Lin Y, Chen H-T, Lin C-H, Huang H-Y (2017) Nitrogen-doped porous carbon material derived from metal-organic gel for small biomolecular sensing. Chem Commun 53(42):5725–5728. https://doi.org/10.1039/C7CC00665A

  11. 11.

    Amin MO, D’Cruz B, Madkour M, Al-Hetlani E (2019) Magnetic nanocomposite-based SELDI probe for extraction and detection of drugs, amino acids and fatty acids. Microchim Acta 186(8):503. https://doi.org/10.1007/s00604-019-3623-2

  12. 12.

    Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51. https://doi.org/10.1039/C2NR32629A

  13. 13.

    Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480. https://doi.org/10.1016/j.carbon.2018.10.010

  14. 14.

    Raj CJ, Kim BC, Cho B-B, Cho W-J, Kim S-J, Park SY, Yu KH (2016) Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot. Bull Mater Sci 39:241–248. https://doi.org/10.1007/s12034-015-1113-7

  15. 15.

    Su Z, Zhou W, Zhang Y (2011) New insight into the soot nanoparticles in a candle flame. Chem Commun 47(16):4700–4702. https://doi.org/10.1039/c0cc05785a

  16. 16.

    Li R, Mao H, Zhu M, Yang Y, Xiong J, Wang W (2019) Facile preparation of broadband absorbers based on patternable candle soot for applications of optical sensors. Sensors Actuators A 285:111–117. https://doi.org/10.1016/j.sna.2018.10.047

  17. 17.

    Sun W, Zhang X, Jia H-R, Zhu Y-X, Guo Y, Gao G, Li Y-H, Wu F-G (2019) Water-dispersible candle soot-derived carbon nano-onion clusters for imaging-guided photothermal cancer therapy. Small 15(11):1804575. https://doi.org/10.1002/smll.201804575

  18. 18.

    Wilson HM, Rahman ARS, Parab AE, Jha N (2019) Ultra-low cost cotton based solar evaporation device for seawater desalination and waste water purification to produce drinkable water. Desalination 456:85–96. https://doi.org/10.1016/j.desal.2019.01.017

  19. 19.

    Kakunuri M, Sharma CS (2015) Candle soot derived fractal-like carbon nanoparticles network as high-rate lithium ion battery anode material. Electrochim Acta 180:353–359. https://doi.org/10.1016/j.electacta.2015.08.124

  20. 20.

    Mitrowska K, Posyniak A, Zmudzki J (2008) Determination of malachite green and leucomalachite green residues in water using liquid chromatography with visible and fluorescence detection and confirmation by tandem mass spectrometry. J Chromatogr A 1207(1–2):94–100. https://doi.org/10.1016/j.chroma.2008.08.028

  21. 21.

    Ren SF, Zhang L, Cheng ZH, Guo YL (2005) Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: applications to neutral small carbohydrates. J Am Soc Mass Spectrom 16(3):333–339. https://doi.org/10.1016/j.jasms.2004.11.017

  22. 22.

    Kim Y-K, Na H-K, Kwack S-J, Ryoo S-R, Lee Y, Hong S, Hong S, Jeong Y, Min D-H (2011) Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano 5:4550–4561. https://doi.org/10.1021/nn200245v

  23. 23.

    Kim Y-K, Min D-H (2014) Mechanistic study of laser desorption/ionization of small molecules on graphene oxide multilayer films. Langmuir 30(42):12675–12683. https://doi.org/10.1021/la5027653

  24. 24.

    Wolstenholme R, Bradshaw R, Clench MR, Francese S (2009) Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids. Rapid Commun Mass Spectrom 23(19):3031–3039. https://doi.org/10.1002/rcm.4218

  25. 25.

    Cheng YH, Zhang Y, Chau SL, Lai SK, Tang HW, Ng KM (2016) Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys. ACS Appl Mater Interfaces 8(43):29668–29675. https://doi.org/10.1021/acsami.6b09668

  26. 26.

    Wei Q, Zhu Y, Liu S, Gao Y, Li X, Shi M, Zhang X, Zhang M (2017) Candle soot coating for latent fingermark enhancement on various surfaces. Sensors 17(7):1612–1618. https://doi.org/10.3390/s17071612

Download references


This work was supported by the National Natural Science Foundation of China (No. 21673096).

Author information

Correspondence to Nan Lu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 10155 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dou, S., Wang, Z. et al. Carbon nanoparticles derived from carbon soot as a matrix for SALDI-MS analysis. Microchim Acta 187, 161 (2020). https://doi.org/10.1007/s00604-020-4142-x

Download citation


  • Washed carbon soot
  • Carbohydrate
  • Quantitation
  • Fingerprint imaging
  • Stability