Advertisement

Microchimica Acta

, 187:130 | Cite as

Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles

  • Zhidu Zhou
  • Pengcheng Zhao
  • Chenxi Wang
  • Pingping Yang
  • Yixi XieEmail author
  • Junjie FeiEmail author
Original Paper
  • 35 Downloads

Abstract

Thiolated β-cyclodextrin functionalized gold nanoparticles (Au-β-CDs) with layered wrinkled flower structure were prepared. Au-β-CDs were electrostatically combined with protonated aminated graphene quantum dots (NH2-GQDs) to form a nanocomposite with better supramolecular recognition, conductivity, catalysis and dispersion properties. For constructing a quercetin (QU) sensor, the nanocomposites were one-step electrodeposited by a cyclic voltammetry (CV) method onto a glassy carbon electrode to form a stable film. Under optimized conditions, the sensor showed a wide linear response range of 1–210 nM, with a lower detection limit of 285 pM. At the same time, flavonoids with similar structures hardly interfere with the determination of QU. The sensor has been used to determine QU in honey, tea, honeysuckle and human serum with satisfactory results.

Graphical abstract

Schematic representation of the fabrication of an ultrasensitive quercetin electrochemical sensor based on aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles (NH2-GQDs/Au-β-CD/GCE).

Keywords

Electrodeposition Differential pulse voltammetry Aminated graphene quantum dots Thiolated β-cyclodextrin AuNPs Quercetin Supramolecular recognition Electrochemical sensor 

Notes

Acknowledgments

This research is supported by the National Natural Science Foundation of China (31701613, 21874114, 21475114).

Supplementary material

604_2019_4106_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1756 kb)

References

  1. 1.
    Kan X, Zhang T, Zhong M, Lu X (2016) CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection. Biosens Bioelectron 77:638–643CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Song T-Q, Yuan K, Qiao W-Z, Shi Y, Dong J, Gao H-L, Yang X-P, Cui J-Z, Zhao B (2019) Water stable [Tb4] cluster-based metal–organic framework as sensitive and recyclable luminescence sensor of Quercetin. Anal Chem 91(4):2595–2599CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wang C, Zuo Y (2011) Ultrasound-assisted hydrolysis and gas chromatography–mass spectrometric determination of phenolic compounds in cranberry products. Food Chem 128(2):562–568CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zou Y, Yan F, Zheng T, Shi D, Sun F, Yang N, Chen L (2015) Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta 135:145–148CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Song T-Q, Yuan K, Qiao W-Z, Shi Y, Dong J, Gao H-L, Yang X, Cui J-Z, Zhao B (2019) A water stable [Tb4] cluster-based metal-organic framework as sensitive and recyclable luminescence sensor of quercetin. Anal Chem 91(4):2595–2599CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wang W, Lin P, Ma L, Xu K, Lin X (2016) Separation and determination of flavonoids in three traditional Chinese medicines by capillary electrophoresis with amperometric detection. J Sep Sci 39(7):1357–1362CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chen G, Zhang H, Ye J (2000) Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Anal Chim Acta 423(1):69–76CrossRefGoogle Scholar
  10. 10.
    Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J (2019) Facile fabrication of electrochemical sensor based on novel core-shell PPy@ ZIF-8 structures: enhanced charge collection for quercetin in human plasma samples. Sensors Actuators BChem 290:434–442CrossRefGoogle Scholar
  11. 11.
    Yang L, Xu B, Ye H, Zhao F, Zeng B (2017) A novel quercetin electrochemical sensor based on molecularly imprinted poly (para-aminobenzoic acid) on 3D Pd nanoparticles-porous graphene-carbon nanotubes composite. Sensors Actuators B Chem 251:601–608CrossRefGoogle Scholar
  12. 12.
    Zhang W, Zong L, Geng G, Li Y, Zhang Y (2018) Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sensors Actuators B Chem 257:1099–1109CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Gu S, Ding Y, Shen M, Jiang L (2014) Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosens Bioelectron 57:239–244CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zhou Z, Gu C, Chen C, Zhao P, Xie Y, Fei J (2019) An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene/mercapto-β-cyclodextrin/Au nanoparticles composite film. Sensors Actuators B Chem 288:88–95CrossRefGoogle Scholar
  15. 15.
    Wu D, Kong Y (2019) Dynamic interaction between host and guest for enantioselective recognition: application of β-cyclodextrin-based charged catenane as electrochemical probe. Anal Chem 91(9):5961–5967CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Murugan E, Kumar K (2019) Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal Chem 91(9):5667–5676CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ikuta D, Hirata Y, Wakamori S, Shimada H, Tomabechi Y, Kawasaki Y, Ikeuchi K, Hagimori T, Matsumoto S, Yamada H (2019) Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins. Science 364(6441):674–677CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host− guest inclusion for enhanced electrochemical performance. ACS Nano 4(7):4001–4010CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Szente L, Szemán J (2013) Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Anal Chem 85(17):8024–8030CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Niu X, Mo Z, Yang X, Sun M, Zhao P, Li Z, Ouyang M, Liu Z, Gao H, Guo R, Liu N (2018) Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim Acta 185(7):328–345CrossRefGoogle Scholar
  21. 21.
    Xue Q, Liu Z, Guo Y, Guo S (2015) Cyclodextrin functionalized graphene–gold nanoparticle hybrids with strong supramolecular capability for electrochemical thrombin aptasensor. Biosens Bioelectron 68:429–436CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Liu Z, Xue Q, Guo Y (2017) Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens Bioelectron 89:444–452CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960–9963CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tan F, Cong L, Li X, Zhao Q, Zhao H, Quan X, Chen J (2016) An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sensors Actuators B Chem 233:599–606CrossRefGoogle Scholar
  25. 25.
    Li J, Qu J, Yang R, Qu L, de B Harrington P (2016) A sensitive and selective electrochemical sensor based on graphene quantum dot/gold nanoparticle nanocomposite modified electrode for the determination of quercetin in biological samples. Electroanalysis 28(6):1322–1330CrossRefGoogle Scholar
  26. 26.
    Hou J, Bei F, Wang M, Ai S (2013) Electrochemical determination of malachite green at graphene quantum dots–gold nanoparticles multilayers–modified glassy carbon electrode. J Appl Electrochem 43(7):689–696CrossRefGoogle Scholar
  27. 27.
    Shadjou N, Hasanzadeh M, Talebi F, Marjani AP (2016) Integration of β-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of vitamin C at physiological pH: a new electrochemical approach. Mater Sci Eng C Mater Biol Appl 67:666–674CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Faridbod F, Sanati AL (2019) Graphene quantum dots in electrochemical sensors/biosensors. Curr Anal Chem 15(2):103–123CrossRefGoogle Scholar
  29. 29.
    Huang S, Lu S, Huang C, Sheng J, Su W, Zhang L, Xiao Q (2015) Sensitive and selective stripping voltammetric determination of copper (II) using a glassy carbon electrode modified with amino-reduced graphene oxide and β-cyclodextrin. Microchim Acta 182(15–16):2529–2539CrossRefGoogle Scholar
  30. 30.
    Kumar A, Saikat M, Selvakannan PR, Renu P, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tang J, Huang R, Zheng S, Jiang S, Yu H, Li Z, Wang J (2019) A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchem J 145:899–907CrossRefGoogle Scholar
  32. 32.
    Xu B, Yang L, Zhao F, Zeng B (2017) A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochim Acta 247:657–665CrossRefGoogle Scholar
  33. 33.
    Veerapandian M, Seo Y-T, Yun K, Lee M-H (2014) Graphene oxide functionalized with silver@silica–polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin. Biosens Bioelectron 58:200–204CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Manokaran J, Muruganantham R, Muthukrishnaraj A, Balasubramanian N (2015) Platinum-polydopamine@SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochim Acta 168:16–24CrossRefGoogle Scholar
  35. 35.
    Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31CrossRefGoogle Scholar
  36. 36.
    Abdullah AA, Yardim Y, Senturk Z (2018) The performance of cathodically pretreated boron-doped diamond electrode in cationic surfactant media for enhancing the adsorptive stripping voltammetric determination of catechol-containing flavonoid quercetin in apple juice. Talanta 187:156–164CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Şenocak A, Köksoy B, Demirbaş E, Basova T, Durmuş M (2018) 3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity. Sensors Actuators B Chem 267:165–173CrossRefGoogle Scholar
  38. 38.
    Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Key Laboratory for Green Organic Synthesis and Application of Hunan ProvinceXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.Hunan Institute of Advanced Sensing and Information TechnologyXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations