Microchimica Acta

, 187:132 | Cite as

Hemin@carbon dot hybrid nanozymes with peroxidase mimicking properties for dual (colorimetric and fluorometric) sensing of hydrogen peroxide, glucose and xanthine

  • Li SuEmail author
  • Yexi Cai
  • Liang Wang
  • Wenpei Dong
  • Guojiang Mao
  • Ye Li
  • Mingsheng Zhao
  • Yanhua Ma
  • Hua ZhangEmail author
Original Paper


The multifunctional hemin@carbon dot hybrid nanozymes (hemin@CD) with simultaneous peroxidase-like activity and fluorescence signalling property was prepared for the first time. Based on these properties, hemin@CD was applied to develop a dual-channel fluorescent probe for H2O2 and H2O2-based biocatalytic systems. By virtue of the peroxidase-like activity, hemin@CD can catalyze the oxidative coupling of 4-aminoantipyrine with phenol in the presence of H2O2 to form a pink-red quinoneimine dye with a maximum absorbance at 505 nm. Under the excitation wavelength of 480 nm, the green fluorescence of hemin@CD peaks at 540 nm and is quenched by the generated quinoneimine dye due to an inner filter effect, and also by H2O2 because of dynamic quenching. Thus, a colorimetric and fluorimetric dual-channel optical probe for H2O2 is obtained. Due to the glucose/xanthine transformations under formation of H2O2 by the relevant oxidase catalysis, the probe can be applied for detection of glucose and xanthine. The colorimetric detection limits for H2O2, glucose and xanthine are 0.11, 0.15, 0.11 μM, and the and fluorimetric detection limits are 0.15, 0.15, 0.12 μM, respectively.

Graphical abstract

Schematic representation of the colorimetric and fluorimetric dual probe for H2O2, glucose and xanthine based on the multifunctional emin@carbon dot) hybrid nanozymes with simultaneous peroxidase-like activity and fluorescence signalling property.


Hemin Carbon dots Hybrid nanomaterial Multifunctional nanozymes Peroxidase mimic Fluorescence signalling H2O2-related biomolecules Inner filter effect Dynamic quenching 



This work was financially supported by National Natural Science Foundation of China (21405034, 21722501, 21976052). Key Project of Science and Technology of Henan Province (192102210041). Program for Science Technology Innovation Talents in Universities of Henan Province (18HASTIT001). Dr. start-up project funding of Henan Normal University (qd18014).

Supplementary material

604_2019_4103_MOESM1_ESM.docx (742 kb)
ESM 1 (DOCX 742 kb)


  1. 1.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093CrossRefGoogle Scholar
  2. 2.
    Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076CrossRefGoogle Scholar
  3. 3.
    Wu J, Li S, Wei H (2018) Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horiz 3(4):367–382CrossRefGoogle Scholar
  4. 4.
    Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y (2017) Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6):5558–5566CrossRefGoogle Scholar
  5. 5.
    Wu J, Qin K, Yuan D, Tan J, Qin L, Zhang X, Wei H (2018) Rational design of au@ Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl Mater Inter 10(15):12954–12959CrossRefGoogle Scholar
  6. 6.
    Dong Y-L, Zhang H-G, Rahman ZU, Su L, Chen X-J, Hu J, Chen X-G (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976CrossRefGoogle Scholar
  7. 7.
    Xue T, Jiang S, Qu Y, Su Q, Cheng R, Dubin S, Chiu CY, Kaner R, Huang Y, Duan X (2012) Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew Chem Int Edit 51(16):3822–3825CrossRefGoogle Scholar
  8. 8.
    Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290CrossRefGoogle Scholar
  9. 9.
    Qin F-X, Jia S-Y, Wang F-F, Wu S-H, Song J, Liu Y (2013) Hemin@ metal-organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768CrossRefGoogle Scholar
  10. 10.
    Zhang F-T, Long X, Zhang D-W, Sun Y-L, Zhou Y-L, Ma Y-R, Qi L-M, Zhang X-X (2014) Layered double hydroxide-hemin nanocomposite as mimetic peroxidase and its application in sensing. Sensors Actuat. B-Chem. 192:150–156CrossRefGoogle Scholar
  11. 11.
    Liu H, Hua Y, Cai Y, Feng L, Li S, Wang H (2019) Mineralizing gold-silver bimetals into hemin-melamine matrix: a nanocomposite nanozyme for visual colorimetric analysis of H2O2 and glucose. Anal Chim Acta 1092:57–65CrossRefGoogle Scholar
  12. 12.
    Shamsipur M, Barati A, Karami S (2017) Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon 124:429–472CrossRefGoogle Scholar
  13. 13.
    Liu H, Li Z, Sun Y, Geng X, Hu Y, Meng H, Ge J, Qu L (2018) Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci Rep 8(1):1086CrossRefGoogle Scholar
  14. 14.
    Liu H, Sun Y, Yang J, Hu Y, Yang R, Li Z, Qu L, Lin Y (2019) High performance fluorescence biosensing of cysteine in human serum with superior specificity based on carbon dots and cobalt-derived recognition. Sensors Actuat. B-Chem. 280:62–68CrossRefGoogle Scholar
  15. 15.
    Liu H, Yang J, Li Z, Xiao L, Aryee AA, Sun Y, Yang R, Meng H, Qu L, Lin Y, Zhang X (2019) Hydrogen-bond-induced emission of carbon dots for wash-free nucleus imaging. Anal Chem 91(14):9259–9265CrossRefGoogle Scholar
  16. 16.
    Geng X, Sun Y, Li Z, Yang R, Zhao Y, Guo Y, Xu J, Li F, Wang Y, Lu S, Qu L (2019) Retrosynthesis of tunable fluorescent carbon dots for precise long-term mitochondrial tracking. Small 15(48):e1901517–e1901517CrossRefGoogle Scholar
  17. 17.
    Li N, Than A, Wang X, Xu S, Sun L, Duan H, Xu C, Chen P (2016) Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano 10(3):3622–3629CrossRefGoogle Scholar
  18. 18.
    Pinkernell U, Effkemann S, Karst U (1997) Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Anal Chem 69(17):3623–3627CrossRefGoogle Scholar
  19. 19.
    Antink WH, Choi Y, K-d S, Piao Y (2018) Simple synthesis of CuO/Ag nanocomposite electrode using precursor ink for non-enzymatic electrochemical hydrogen peroxide sensing. Sensors Actuators B Chem 255:1995–2001CrossRefGoogle Scholar
  20. 20.
    Sherino B, Mohamad S, Halim SNA, Manan NSA (2018) Electrochemical detection of hydrogen peroxide on a new microporous Ni–metal organic framework material-carbon paste electrode. Sensors Actuat B-Chem 254:1148–1156CrossRefGoogle Scholar
  21. 21.
    Ge S, Zhao J, Wang S, Lan F, Yan M, Yu J (2018) Ultrasensitive electrochemiluminescence assay of tumor cells and evaluation of H2O2 on a paper-based closed-bipolar electrode by in-situ hybridization chain reaction amplification. Biosens Bioelectron 102:411–417CrossRefGoogle Scholar
  22. 22.
    Karimi A, Husain S, Hosseini M, Azar PA, Ganjali M (2018) Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sensors Actuat. B-Chem 271:90–96CrossRefGoogle Scholar
  23. 23.
    Liu H, Ding Y, Yang B, Liu Z, Liu Q, Zhang X (2018) Colorimetric and ultrasensitive detection of H2O2 based on au/Co3O4-CeOx nanocomposites with enhanced peroxidase-like performance. Sensors Actuat B-Chem 271:336–345CrossRefGoogle Scholar
  24. 24.
    Lin T, Qin Y, Huang Y, Yang R, Hou L, Ye F, Zhao S (2018) A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53 (Fe) nanozyme. Chem Commun 54(14):1762–1765CrossRefGoogle Scholar
  25. 25.
    Xiao N, Liu SG, Mo S, Yang YZ, Han L, Ju YJ, Li NB, Luo HQ (2018) B, N-carbon dots-based ratiometric fluorescent and colorimetric dual-readout sensor for H2O2 and H2O2-involved metabolites detection using ZnFe2O4 magnetic microspheres as peroxidase mimics. Sensors Actuat. B-Chem 273:1735–1743CrossRefGoogle Scholar
  26. 26.
    Fang A, Wu Q, Lu Q, Chen H, Li H, Liu M, Zhang Y, Yao S (2016) Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid. Biosens Bioelectron 86:664–670CrossRefGoogle Scholar
  27. 27.
    Li H, Yan X, Qiao S, Lu G, Su X (2018) Yellow-emissive carbon dot-based optical sensing platforms: cell imaging and analytical applications for biocatalytic reactions. ACS Appl. Mater. Inter. 10(9):7737–7744CrossRefGoogle Scholar
  28. 28.
    Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y (2014) Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6(3):1890–1895CrossRefGoogle Scholar
  29. 29.
    Yu X, Liu J, Yu Y, Zuo S, Li B (2014) Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 68:718–724CrossRefGoogle Scholar
  30. 30.
    Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D (2016) Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv Mater 28(18):3516–3521CrossRefGoogle Scholar
  31. 31.
    Zhong H-X, Wang J, Zhang Y-W, Xu W-L, Xing W, Xu D, Zhang Y-F, Zhang X-B (2014) ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Edit. 53(51):14235–14239CrossRefGoogle Scholar
  32. 32.
    Metelitza DI, Litvinchuk AV, Savenkova MI (1991) Peroxidase-catalyzed co-oxidation of halogen-substituted phenols and 4-aminoantipyrine. J Mol Catal 67(3):401–411CrossRefGoogle Scholar
  33. 33.
    Song Y, Zhu S, Xiang S, Zhao X, Zhang J, Zhang H, Fu Y, Yang B (2014) Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 6(9):4676–4682CrossRefGoogle Scholar
  34. 34.
    Chen J, Chen Q, Chen J, Qiu H (2016) Magnetic carbon nitride nanocomposites as enhanced peroxidase mimetics for use in colorimetric bioassays, and their application to the determination of H2O2 and glucose. Microchim Acta 183(12):3191–3199CrossRefGoogle Scholar
  35. 35.
    Ma Y, Cen Y, Sohail M, Xu G, Wei F, Shi M, Xu X, Song Y, Ma Y, Hu Q (2017) A Ratiometric fluorescence universal platform based on N, cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl. Mater. Inter. 9(38):33011–33019CrossRefGoogle Scholar
  36. 36.
    Qiao F, Wang J, Ai S, Li L (2015) As a new peroxidase mimetics: the synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensors Actuat. B-Chem 216:418–427CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  • Li Su
    • 1
    Email author
  • Yexi Cai
    • 1
  • Liang Wang
    • 1
  • Wenpei Dong
    • 1
  • Guojiang Mao
    • 1
  • Ye Li
    • 1
  • Mingsheng Zhao
    • 1
  • Yanhua Ma
    • 2
  • Hua Zhang
    • 1
    Email author
  1. 1.Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations