Advertisement

Microchimica Acta

, 187:117 | Cite as

A graphene/TiS3 heterojunction for resistive sensing of polar vapors at room temperature

  • Nassim Rafiefard
  • Azam Iraji zadEmail author
  • Ali Esfandiar
  • Pezhman Sasanpour
  • Somayeh Fardindoost
  • Yichao Zou
  • Sarah J. Haigh
  • Seyed Hossein Hosseini Shokouh
Original Paper
  • 54 Downloads

Abstract

The room temperature polar vapor sensing behavior of a graphene-TiS3 heterojunction material and TiS3 nanoribbons is described. The nanoribbons were synthesized via chemical vapor transport (CVT) and their structure was investigated by scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and Fourier transform infrared spectroscopies. The gas sensing performance was assessed by following the changes in their resistivities. Sensing devices were fabricated with gold contacts and with lithographically patterned graphene (Gr) electrodes in a heterojunction Gr-TiS3-Gr. The gold contacted TiS3 device has a rather linear I-V behavior while the Gr-TiS3-Gr heterojunction forms a contact with a higher Schottky barrier (250 meV). The I-V responses of the sensors were recorded at room temperature at a relative humidity of 55% and for different ethanol vapor concentrations (varying from 2 to 20 ppm). The plots indicate an increase in the resistance of Gr-TiS3-Gr due to adsorption of water and ethanol with a relatively high sensing response (~495% at 2 ppm). The results reveal that stable responses to 2 ppm concentrations of ethanol are achieved at room temperature. The response and recovery times are around 8 s and 72 s, respectively. Weaker responses are obtained for methanol and acetone.

Graphical abstract

Schematic representation of resistance sensor for detection of low concentration of ethanol vapor. The graphene and TiS3 nanoribbons were synthesized using chemical vapor deposition and chemical vapor transport technique respectively. The 2D graphene/TiS3 heterojunction device was fabricated to make a high response sensor due to their synergy effect.

Keywords

Gas sensor Graphene 2D layered materials 2D and 1D semiconductors Nanocomposite Titanium trisulfide Transition metal trichalcogenides (TMTCs) Tunable Schottky barrier VOC sensor Van der Waals heterostructures Chemical vapor transport (CVT) Chemical vapor deposition (CVD) 

Notes

Acknowledgements

A.I. thanks the National Science Foundation (INSF, Grant No. 940011) for the financial support of her research. A.E. would like to thank the Iran National Science Foundation (INSF, Grant No. 96011388). S.J.H. thanks the Engineering and Physical Sciences (U.K.) (Grants EP/M010619/1, EP/P009050/1) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant ERC-2016-STG-EvoluTEM-715502 and the ERC Synergy project). We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre that contributed to the results presented here.

Supplementary material

604_2019_4097_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3270 kb)

References

  1. 1.
    Kim JS, Yoo HW, Choi HO, Jung HT (2014) Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett 14(10):5941–5947PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Li J, Lu Y, Meyyappan M (2006) Nano chemical sensors with polymer-coated carbon nanotubes. IEEE Sensors J 6(5):1047–1051CrossRefGoogle Scholar
  3. 3.
    Lu Y, Li J, Han J, Ng HT, Binder C, Partridge C, Meyyappan M (2004) Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett 391(4–6):344–348CrossRefGoogle Scholar
  4. 4.
    Han J, Yang J, Tang J, Ghasemian MB, Hubble LJ, Syed N, Daeneke T, Kalantar-Zadeh K (2019) Liquid metals for tuning gas sensitive layers. J Mater Chem C 7:6375–6382CrossRefGoogle Scholar
  5. 5.
    Xu S, Zhang H, Qi L, Xiao L (2019) Conductometric acetone vapor sensor based on the use of gold-doped three-dimensional hierarchical porous zinc oxide microspheres. Microchim Acta 186(6):342CrossRefGoogle Scholar
  6. 6.
    Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H (2003) Application-specific sensor systems based on CMOS chemical microsensors. Sensors Actuators B Chem 70(1–3):2–11Google Scholar
  7. 7.
    Suehiro J, Zhou G, Hara M (2005) Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor. Sensors Actuators B Chem 105(2):164–169CrossRefGoogle Scholar
  8. 8.
    McGill RA, Nguyen VK, Chung R, Shaffer RE, DiLella D, Stepnowski JL, Mlsna TE, Venezky DL, Dominguez D (2000) The “NRL-SAWRHINO”: a nose for toxic gases. Sensors Actuators B Chem 65(1–3):10–13CrossRefGoogle Scholar
  9. 9.
    Wei C, Dai L, Roy A, Tolle TB (2006) Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J Am Chem Soc 128(5):1412–1413PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Alizadeh T, Rezaloo F (2013) A new chemiresistor sensor based on a blend of carbon nanotube, nano-sized molecularly imprinted polymer and poly methyl methacrylate for the selective and sensitive determination of ethanol vapor. Sensors Actuators B Chem 176:28–37CrossRefGoogle Scholar
  11. 11.
    Janfaza S, Nojavani MB, Nikkhah M, Alizadeh T, Esfandiar A, Ganjali MR (2019) A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes. Microchim Acta 186(3):137CrossRefGoogle Scholar
  12. 12.
    Choi J, Lee J, Choi J, Jung D, Shim SE (2010) Electrospun PEDOT: PSS/PVP nanofibers as the chemiresistor in chemical vapour sensing. Synth Met 160(13–14):1415–1421CrossRefGoogle Scholar
  13. 13.
    Hosseini-Shokouh SH, Fardindoost S, Zad AI (2019) A high-performance and low-cost ethanol vapor sensor based on a TiS2/PVP composite. ChemistrySelect 4(21):6662–6666CrossRefGoogle Scholar
  14. 14.
    Roldan R, Chirolli L, Prada E, Silva-Guillén JA, San-Jose P, Guinea F (2017) Theory of 2D crystals: graphene and beyond. Chem Soc Rev 46(15):4387–4399PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lebègue S, Björkman T, Klintenberg M, Nieminen RM, Eriksson O (2013) Two-dimensional materials from data filtering and ab initio calculations. Phys Rev X 3(3):031002Google Scholar
  16. 16.
    Island JO, Barawi M, Biele R, Almazán A, Clamagirand JM, Ares JR, Sánchez C, van der Zant HS, Álvarez JV, D'Agosta R, Ferrer IJ (2015) TiS3 transistors with tailored morphology and electrical properties. Adv Mater 27(16):2595–2601PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Aryanpour M, Rafiefard N, Hosseini-Shokouh SH, Fardindoost S (2018) Computational investigation of gas detection and selectivity on TiS3 nanoflakes supported by experimental evidence. Phys Chem Chem Phys 20(39):25458–25466PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Liu J, Guo Y, Wang FQ, Wang Q (2018) TiS3 sheet based van der Waals heterostructures with a tunable Schottky barrier. Nanoscale 10(2):807–815PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Castellanos-Gomez A (2016) Why all the fuss about 2D semiconductors? Nat Photonics 10(4):202CrossRefGoogle Scholar
  20. 20.
    Ferrer IJ, Ares JR, Clamagirand JM, Barawi M, Sánchez C (2013) Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films 535:398–401CrossRefGoogle Scholar
  21. 21.
    Esfandiar A, Kybert NJ, Dattoli EN, Hee Han G, Lerner MB, Akhavan O, Irajizad A, Charlie Johnson AT (2013) DNA-decorated graphene nanomesh for detection of chemical vapors. Appl Phys Lett 103(18):183110CrossRefGoogle Scholar
  22. 22.
    Lipatov A, Loes MJ, Lu H, Dai J, Patoka P, Vorobeva NS, Muratov DS, Ulrich G, Kästner B, Hoehl A, Ulm G (2018) Quasi-1D TiS3 Nanoribbons: mechanical exfoliation and thickness-dependent Raman spectroscopy. ACS Nano 12(12):12713–12720PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G, He D, Zhang L (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8(2):95–119CrossRefGoogle Scholar
  24. 24.
    Island JO, Biele R, Barawi M, Clamagirand JM, Ares JR, Sánchez C, Van Der Zant HS, Ferrer IJ, D’Agosta R, Castellanos-Gomez A (2016) Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties. Sci Rep 6:22214PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dai J, Li M, Zeng XC (2016) Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene. Wiley Interdisciplinary Reviews: Computational Molecular Science 6(2):211–222Google Scholar
  26. 26.
    Lipatov A, Wilson PM, Shekhirev M, Teeter JD, Netusil R, Sinitskii A (2015) Few-layered titanium trisulfide (TiS3) field-effect transistors. Nanoscale 7(29):12291–12296PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dwivedi P, Das S, Dhanekar S (2017) Wafer-scale synthesized MoS2/porous silicon nanostructures for efficient and selective ethanol sensing at room temperature. ACS Appl Mater Interfaces 9(24):21017–21024CrossRefGoogle Scholar
  28. 28.
    İyikanat F, Sahin H, Senger RT, Peeters FM (2015) Vacancy formation and oxidation characteristics of single layerTiS3. J Phys Chem C 119(19):10709–10715CrossRefGoogle Scholar
  29. 29.
    Burikov S, Dolenko T, Patsaeva S, Starokurov Y, Yuzhakov V (2010) Raman and IR spectroscopy research on hydrogen bonding in water–ethanol systems. Mol Phys 108(18):2427–2436CrossRefGoogle Scholar
  30. 30.
    Stewart KM, Chen WT, Mansour RR, Penlidis A (2015) Doped poly (2, 5-dimethyl aniline) for the detection of ethanol. J Appl Polym Sci 132(28):42259CrossRefGoogle Scholar
  31. 31.
    Tan J, Dun M, Li L, Zhao J, Tan W, Lin Z, Huang X (2017) Synthesis of hollow and hollowed-out Co3O4 microspheres assembled by porous ultrathin nanosheets for ethanol gas sensors: responding and recovering in one second. Sensors Actuators B Chem 249:44–52CrossRefGoogle Scholar
  32. 32.
    Choi S, Bonyani M, Sun GJ, Lee JK, Hyun SK, Lee C (2018) Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors. Appl Surf Sci 432:241–249CrossRefGoogle Scholar
  33. 33.
    Jiang Z, Wang J, Meng L, Huang Y, Liu L (2011) A highly efficient chemical sensor material for ethanol: Al2O3/Graphene nanocomposites fabricated from graphene oxide. Chem Commun 47(22):6350–6352CrossRefGoogle Scholar
  34. 34.
    Xu S, Sun F, Pan Z, Huang C, Yang S, Long J, Chen Y (2016) Reduced graphene oxide-based ordered macroporous films on a curved surface: general fabrication and application in gas sensors. ACS Appl Mater Interfaces 8(5):3428–3437PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Alshammari AS, Alenezi MR, Lai KT, Silva SR (2017) Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Mater Lett 189:299–302CrossRefGoogle Scholar
  36. 36.
    Zhao PX, Tang Y, Mao J, Chen YX, Song H, Wang JW, Song Y, Liang YQ, Zhang XM (2016) One-dimensional MoS2-decorated TiO2 nanotube gas sensors for efficient alcohol sensing. J Alloys Compd 674:252–258CrossRefGoogle Scholar
  37. 37.
    Barzegar M, Tiwari A (2019) On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum 167:90–97CrossRefGoogle Scholar
  38. 38.
    Lee E, Yoon YS, Kim DJ (2018) Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens 3(10):2045–2060PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jin Y, Li X, Yang J (2015) Single layer of MX3 (M= Ti, Zr; X= S, Se, Te): a new platform for nano-electronics and optics. Phys Chem Chem Phys 17(28):18665–18669PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yang S, Jiang C, Wei SH (2017) Gas sensing in 2D materials. Appl Phys Rev 4(2):021304CrossRefGoogle Scholar
  41. 41.
    Perkins FK, Friedman AL, Cobas E, Campbell PM, Jernigan GG, Jonker BT (2013) Chemical vapor sensing with monolayer MoS2. Nano Lett 13(2):668–673PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Liu B, Chen L, Liu G, Abbas AN, Fathi M, Zhou C (2014) High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8(5):5304–5314PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nam H, Oh BR, Chen P, Chen M, Wi S, Wan W, Kurabayashi K, Liang X (2015) Multiple MoS2 transistors for sensing molecule interaction kinetics. Sci Rep 5:10546PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee YJ, Park SG, Kwon JD, Kim CS, Song M, Jeong Y (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lee K, Gatensby R, McEvoy N, Hallam T, Duesberg GS (2013) High-performance sensors based on molybdenum disulfide thin films. Adv Mater 25(46):6699–6702PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wu L High throughput microfluidic technologies for cell separation and single-cell analysis (Doctoral dissertation, Massachusetts Institute of Technology)Google Scholar
  47. 47.
    Barzegar M, Berahman M, Iraji zad A (2018) Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene. Beilstein J Nanotechnol 9(1):608–615PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran
  3. 3.Department of Medical Physics and Biomedical Engineering, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  4. 4.School of NanoscienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
  5. 5.School of MaterialsThe University of ManchesterManchesterUK
  6. 6.Department of PhysicsIran University of Science and TechnologyTehranIran

Personalised recommendations