Microchimica Acta

, 187:111 | Cite as

Cerium(III)-doped MoS2 nanosheets with expanded interlayer spacing and peroxidase-mimicking properties for colorimetric determination of hydrogen peroxide

  • Xin Zhang
  • Cuiyan Wang
  • Yanfang GaoEmail author
Original Paper


Molybdenum disulfide (MoS2) nanosheets (NSs) with an 8.1 Å interlayer spacing were heavily loaded with cerium(III) ions by a one-step hydrothermal method. The material thus obtained has a strong peroxidase-like (POx-like) activity. The introduction of the large Ce(III) ion enlarges the interlayer distance of MoS2NSs. It also supports shuttling and transport of substrate, intermediates and electrons. It also increases the specific surface of MoS2. This results in a larger number of active sites, accelerates the contact between substrate and catalytic surface, and improves the kinetics of the catalytic reaction. The nanomaterial catalyzes the oxidation of colorless 3,3′,5,5′-tetramethylbenzidine by hydrogen peroxide (H2O2 ) to give a blue-green product with an absorption maximum at 652 nm. The assay has a linear response in the 1–50 μM H2O2 concentration range and a 0.47 μM limit of detection. The colorimetric method was applied to real milk samples, and high recoveries (98.4%–108.0%) and repeatability were obtained.

Graphical abstract

Molybdenum disulfide nanosheets loaded with cerium(III) catalyze the oxidation of colorless 3,3′,5,5′-tetramethylbenzidine (TMB) by hydrogen peroxide to give a blue-green product with an absorption maximum at 652 nm


Peroxidase mimic Enzyme mimics Colorimetric assay TMB-H2O2 system One-pot synthesis Catalytic mechanism 



The work has been supported by the National Science Foundation of China (21566030), and Natural science foundation of Inner Mongolia autonomous region (2015MS0217), and the Scientific Research Program of Higher Education Institutions of Inner Mongolia Autonomous Region (B2016101), and the Scientific research project of Inner Mongolia University of Technology (X201307).

Compliance with ethical standards

The work of this study conforms to ethical standards.

Conflict of interest

There are no conflicts to declare.

Supplementary material

604_2019_4078_MOESM1_ESM.docx (7.6 mb)
ESM 1 (DOCX 7741 kb)


  1. 1.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093CrossRefGoogle Scholar
  2. 2.
    Lin T, Zhong L, Guo L, Fu F, Chen G (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6(20):11856–11862CrossRefGoogle Scholar
  3. 3.
    Huang L, Zhu W, Zhang W, Chen K, Wang J, Wang R, Yang Q, Hu N, Suo Y, Wang J (2018) Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim Acta 185(1):7CrossRefGoogle Scholar
  4. 4.
    Yang H, Wang Z, Zhou Q, Xu C, Hou J (2019) Nanoporous platinum-copper flowers for non-enzymatic sensitive detection of hydrogen peroxide and glucose at near-neutral pH values. Microchim Acta 186(9):631CrossRefGoogle Scholar
  5. 5.
    Choleva TG, Gatselou VA, Tsogas GZ, Giokas DL (2018) Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim Acta 185(1):22CrossRefGoogle Scholar
  6. 6.
    Yang F, Jiang G, Yan F, Chang Q (2019) Fe/C magnetic nanocubes with enhanced peroxidase mimetic activity for colorimetric determination of hydrogen peroxide and glucose. Microchim Acta 186(7):417CrossRefGoogle Scholar
  7. 7.
    Li Y, Liu J, Fu Y, Xie Q, Li Y (2019) Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide. Microchim Acta 186(7):456CrossRefGoogle Scholar
  8. 8.
    Ortiz-Gomez I, Salinas-Castillo A, Garcia Garcia A, Antonio Alvarez-Bermejo J, de Orbe-Paya I, Rodriguez-Dieguez A, Fermin Capitan-Vallvey L (2018) Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchim Acta 185(1):47CrossRefGoogle Scholar
  9. 9.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323CrossRefGoogle Scholar
  10. 10.
    Liu H, Wang B, Li D, Zeng X, Tang X, Gao Q, Cai J, H-h C (2018) MoS2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide. Microchim Acta 185(6):287CrossRefGoogle Scholar
  11. 11.
    Zhu Y, Peng L, Fang Z, Yan C, Zhang X, Yu G (2018) Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv Mater 30(15):1706347CrossRefGoogle Scholar
  12. 12.
    Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8(5):1594–1601CrossRefGoogle Scholar
  13. 13.
    Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331CrossRefGoogle Scholar
  14. 14.
    Han X, Tong X, Liu X, Chen A, Wen X, Yang N, Guo X-Y (2018) Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal 8(3):1828–1836CrossRefGoogle Scholar
  15. 15.
    Xue Y, Zhang Q, Wang W, Cao H, Yang Q, Fu L (2017) Opening two-dimensional materials for energy conversion and storage: a concept. Adv Energy Mater 7(19):1602684CrossRefGoogle Scholar
  16. 16.
    Sun T, Wang J, Chi X, Lin Y, Chen Z, Ling X, Qiu C, Xu Y, Song L, Chen W, Su C (2018) Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal 8(8):7585–7592CrossRefGoogle Scholar
  17. 17.
    Xie JF, Zhang JJ, Li S, Grote F, Zhang XD, Zhang H, Wang RX, Lei Y, Pan BC, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888CrossRefGoogle Scholar
  18. 18.
    Ye L, Chen S, Li W, Pi M, Wu T, Zhang D (2015) Tuning the electrical transport properties of multilayered molybdenum disulfide nanosheets by intercalating phosphorus. J Phys Chem C 119(17):9560–9567CrossRefGoogle Scholar
  19. 19.
    Shu Y, Zhang W, Cai H, Yang Y, Yu X, Gao Q (2019) Expanding the interlayers of molybdenum disulfide toward the highly sensitive sensing of hydrogen peroxide. Nanoscale 11(14):6644–6653CrossRefGoogle Scholar
  20. 20.
    Zhao H, Dong Y, Jiang P, Wang G, Zhang J (2015) Highly dispersed CeO2 on TiO2 nanotube: a synergistic nanocomposite with superior peroxidase-like activity. Acs Appl Mater Inter 7(12):6451–6461CrossRefGoogle Scholar
  21. 21.
    Guo X, Wang Y, Wu F, Ni Y, Kokot S (2015) A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 140(4):1119–1126CrossRefGoogle Scholar
  22. 22.
    Jayabal S, Saranya G, Wu J, Liu Y, Geng D, Meng X (2017) Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J Mater Chem A 5(47):24540–24563CrossRefGoogle Scholar
  23. 23.
    Nicolini V, Gambuzzi E, Malavasi G, Menabue L, Menziani MC, Lusvardi G, Pedone A, Benedetti F, Luches P, D'Addato S, Valeri S (2015) Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J Phys Chem B 119(10):4009–4019CrossRefGoogle Scholar
  24. 24.
    Poisot M, Bensch W, Fuentes S, Ornelas C, Alonso G (2007) High activity Ni/MoS2 catalysts obtained from alkylthiometalate mixtures for the hydrodesulfurization of dibenzothiophene. Catal Lett 117(1–2):43–52CrossRefGoogle Scholar
  25. 25.
    Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. Acs Appl Mater Inter 7(49):27242–27253CrossRefGoogle Scholar
  26. 26.
    Varakin AN, Mozhaev AV, Pimerzin AA, Nikulshin PA (2018) Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: advantages of support leaching method. Appl Catal B-Environ 238:498–508CrossRefGoogle Scholar
  27. 27.
    Sun H, Gao N, Dong K, Ren J, Qu X (2014) Graphene auantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210CrossRefGoogle Scholar
  28. 28.
    Li X, Du X (2017) Molybdenum disulfide nanosheets supported au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sensor Actuat B-Chem 239:536–543CrossRefGoogle Scholar
  29. 29.
    Jampaiah D, Reddy TS, Kandjani AE, Selvakannan PR, Sabri YM, Coyle VE, Shukla R, Bhargava SK (2016) Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J Mater Chem B 4(22):3874–3885CrossRefGoogle Scholar
  30. 30.
    Chen X, Su B, Cai Z, Chen X, Oyama M (2014) PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H2O2. Sensor Actuat B-Chem 201:286–292CrossRefGoogle Scholar
  31. 31.
    Ai X, Wang Y, Hou X, Yang L, Zheng C, Wu L (2013) Advanced oxidation using Fe3O4 magnetic nanoparticles and its application in mercury speciation analysis by high performance liquid chromatography-cold vapor generation atomic fluorescence spectrometry. Analyst 138(12):3494–3501CrossRefGoogle Scholar
  32. 32.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRefGoogle Scholar
  33. 33.
    Hosseini M, Sabet FS, Khabbaz H, Aghazadeh M, Mizani F, Ganjali MR (2017) Enhancement of the peroxidase-like activity of cerium-doped ferrite nanoparticles for colorimetric detection of H2O2 and glucose. Anal Methods 9(23):3519–3524CrossRefGoogle Scholar
  34. 34.
    Wang Y, Zhang D, Wang J (2018) Metastable alpha-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2. Microchim Acta 185(1):1CrossRefGoogle Scholar
  35. 35.
    Fatemeh H, Fatemeh HK, Shiva F, Zeinab M (2019) Carbon dots on V2O5 nanowires are a viable peroxidase mimic for colorimetric determination of hydrogen peroxide and glucose. Microchim Acta 186:234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Chemical EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations