Microchimica Acta

, 187:116 | Cite as

A colorimetric method for determination of the prostate specific antigen based on enzyme-free cascaded signal amplification via  peptide-copper(II) nanoparticles

  • Ting Sun
  • Ning Xia
  • Fang Yuan
  • Xiaoman Liu
  • Yong ChangEmail author
  • Shudi Liu
  • Lin LiuEmail author
Original Paper


Biotinylated peptide-Cu2+ nanoparticles (Cu-P NPs) were synthesized via “one-pot” self-assembly. The peptide P conststs of a hydrophobic dipeptide (FF), a tripeptide (KGH), and a biotin moiety attached to the terminal amino group of the Lys residue. The Cu-P NPs contain abundant catalytically active Cu2+ ions which are liberated by acid-induced dissolution. The released Cu2+ ions catalyze the oxidization of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 because of their intrinsic peroxidase activity, and this results in the formation of a blue-green coloration. Based on the streptavidin–biotin interaction, the Cu-P NPs were employed to establish an enzyme-free colorimetric method for determination of prostate-specific antigen (PSA) as a model biomarker. Under optimal conditions, the linear response range is 0.001–1 ng mL−1, with a limit of detection as low as 1 pg mL−1.

Graphical abstract

Schematic illustration of a colorimetric immunoassay for the prostate specific antigen (PSA) with biotinylated peptide-Cu2+ nanoparticle (Cu-P NP) as the signal label based on the streptavidin (SA)–biotin interaction. The signal was produced by Cu2+-catalyzed oxidization of 3,3′,5,5′-tetramethylbenzidine (TMB). P: KGHFF


Colorimetric immunoassay Enzyme-free amplification Cu2+ ion Peptide self-assembly Prostate specific antigen 



We acknowledge the financial support of the Henan Province University Innovation Talents Support Program (18HASTIT005), the Science & Technology Foundation of Anyang City, and the First Class Discipline-Chemistry of Guizhou Education University (2019YLXKB03).

Supplementary material

604_2019_4074_MOESM1_ESM.docx (3 mb)
ESM 1 (DOCX 3 mb)


  1. 1.
    Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39:50–56CrossRefGoogle Scholar
  2. 2.
    Zheng W, Jiang X (2016) Integration of nanomaterials for colorimetric immunoassays with improved performance: a functional perspective. Analyst 141:1196–1208CrossRefGoogle Scholar
  3. 3.
    Li S, Liu X, Chai H, Huang Y (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC-Trend Anal Chem 105:391–403CrossRefGoogle Scholar
  4. 4.
    Wang C, Gao J, Tan H (2018) Integrated antibody with catalytic meta-organic framework for colorimetric immunoassay. ACS Appl Mater Interfaces 10:25113–25120CrossRefGoogle Scholar
  5. 5.
    Zhang L, Fan C, Liu M, Liu F, Bian S, Du S, Zhu S, Wang H (2018) Biominerized gold-Hemin@MOF composites with peroxidase-like andgold catalysis activities: a high-throughput colorimetric immunoassay for alpha-fetoprotein in blood by ELISA andgold-catalytic silver staining. Sensors Actuators B Chem 266:543–552CrossRefGoogle Scholar
  6. 6.
    Chu B, Qi T, Liao J, Peng J, Li W, Fu S, Luo F, Qian Z (2012) Colorimetric detection of cancer biomarker based on pH induced color change. Sensors Actuators B Chem 166:56–60CrossRefGoogle Scholar
  7. 7.
    Chen P, Jiang X, Huang K, Hu P, Li X, Wei L, Liu W, Wei L, Tao C, Ying B, Wei X, Geng J (2019) Multimode microRNA sensing via multiple enzyme-free signal amplification and cation-exchange reaction. ACS Appl Mater Interfaces 11:36476–36484CrossRefGoogle Scholar
  8. 8.
    Liu L, Hao Y, Deng D, Xia N (2019) Nanomaterials-based colorimetric immunoassays. Nanomaterials 9:316CrossRefGoogle Scholar
  9. 9.
    Li Y, Wu J, Zhang C, Chen Y, Wang Y, Xie M (2017) Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Microchim Acta 184:2767–2774CrossRefGoogle Scholar
  10. 10.
    Liu Y, Zhao C, Song X, Xu K, Wang J, Li J (2017) Colorimetric immunoassay for rapid detection of Vibrio parahaemolyticus. Microchim Acta 184:4785–4792CrossRefGoogle Scholar
  11. 11.
    Oh S, Kim J, Tran VT, Lee DK, Ahmed SR, Hong JC, Lee J, Park EY, Lee J (2018) Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection. ACS Appl Mater Interfaces 10:12534–12543CrossRefGoogle Scholar
  12. 12.
    Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X (2017) An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11:2052–2059CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Xu G, Xie L, Guan Y (2019) Colorimetric immunoassay for human chorionic gonadotropin by using peroxidase-mimickingMnO(2) nanorods immobilized in microplate wells. Microchim Acta 186:581CrossRefGoogle Scholar
  14. 14.
    de la Rica R, Stevens MM (2013) Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat Protoc 8:1759–1764CrossRefGoogle Scholar
  15. 15.
    Peng M-P, Ma W, Long Y-T (2015) Alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye. Anal Chem 87:5891–5896CrossRefGoogle Scholar
  16. 16.
    Bui MP, Ahmed S, Abbas A (2015) Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett 15:6239–6246CrossRefGoogle Scholar
  17. 17.
    Ren R, Cai G, Yu Z, Tang D (2018) Glucose-loaded liposomes for amplified colorimetric immunoassay of streptomycin based on enzyme-induced iron(II) chelation reaction with phenanthroline. Sensors Actuators B Chem 265:174–181CrossRefGoogle Scholar
  18. 18.
    Shao F, Zhang L, Jiao L, Wang X, Miao L, Li H, Zhou F (2018) Enzyme-free immunosorbent assay of prostate specific antigen amplified by releasing pH indicator molecules entrapped in mesoporous silica nanoparticles. Anal Chem 90:8673–8679CrossRefGoogle Scholar
  19. 19.
    Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973CrossRefGoogle Scholar
  20. 20.
    Holme MN, Rana S, Barriga HMG, Kauscher U, Brooks NJ, Stevens MM (2018) A robust liposomal platform for direct colorimetric detection of sphingomyelinase enzyme and inhibitors. ACS Nano 12:8197–8207CrossRefGoogle Scholar
  21. 21.
    Qu W, Liu Y, Liu D, Wang Z, Jiang X (2011) Copper-mediated amplification allows readout of immunoassays by the naked eye. Angew Chem Int Ed 50:3442–3445CrossRefGoogle Scholar
  22. 22.
    Wu J, Xianyu Y, Wang X, Hu D, Zhao Z, Lu N, Xie M, Lei H, Chen Y (2018) Enzyme-free amplification strategy for biosensing using Fe(3+)-poly(glutamic acid) coordination chemistry. Anal Chem 90:4725–4732CrossRefGoogle Scholar
  23. 23.
    Li B, Lai G, Zhang H, Hu S, Yu A (2017) Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker. Anal Chim Acta 963:106–111CrossRefGoogle Scholar
  24. 24.
    Yu RJ, Ma W, Liu XY, Jin HY, Han HX, Wang HY, Tian H, Long YT (2016) Metal-linked immunosorbent assay (MeLISA): the enzyme-free alternative to ELISA for biomarker detection in serum. Theranostics 6:1732–1739CrossRefGoogle Scholar
  25. 25.
    Li B, Lai G, Lin B, Yu A, Yang N (2018) Enzyme-induced biomineralization of cupric subcarbonate for ultrasensitive colorimetric immunosensing of carcinoembryonic antigen. Sensors Actuators B Chem 262:789–795CrossRefGoogle Scholar
  26. 26.
    Zheng A, Zhang X, Gao J, Liu X, Liu J (2016) Peroxidase-like catalytic activity of copper ions and its application for highly sensitive detection of glypican-3. Anal Chim Acta 941:87–93CrossRefGoogle Scholar
  27. 27.
    Zhu N, Zou Y, Huang M, Dong S, Wu X, Liang G, Han Z, Zhang Z (2018) A sensitive, colorimetric immunosensor based on Cu-MOFs and HRP for detection of dibutyl phthalate in environmental and food samples. Talanta 186:104–109CrossRefGoogle Scholar
  28. 28.
    Cheng F, Chen Z, Zhang Z, Chen L (2016) A highly sensitive colorimetric metalloimmunoassay based on copper-mediated etching of gold nanorods. Analyst 141:1918–1921CrossRefGoogle Scholar
  29. 29.
    Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890CrossRefGoogle Scholar
  30. 30.
    Zhao J, Yang L, Dai Y, Tang Y, Gong X, Du D, Cao Y (2018) Peptide-templated multifunctional nanoprobe for feasible electrochemical assay of intracellular kinase. Biosens Bioelectron 119:42–47CrossRefGoogle Scholar
  31. 31.
    Han A, Wang H, Kwok RT, Ji S, Li J, Kong D, Tang BZ, Liu B, Yang Z, Ding D (2016) Peptide-induced AIEgen self-assembly: a new strategy to realize highly sensitive fluorescent light-up probes. Anal Chem 88:3872–3878CrossRefGoogle Scholar
  32. 32.
    Shan Z, Lu M, Wang L, MacDonald B, MacInnis J, Mkandawire M, Zhang X, Oakes KD (2016) Chloride accelerated Fenton chemistry for the ultrasensitive and selective colorimetric detection of copper. Chem Commun 52:2087–2090CrossRefGoogle Scholar
  33. 33.
    Gonzalez P, Bossak K, Stefaniak E, Hureau C, Raibaut L, Bal W, Faller P (2018) N-terminal Cu-binding motifs (Xxx-Zzz-His, Xxx-His) and their derivatives: chemistry, biology and medicinal applications. Chem Eur J 24:8029–8041CrossRefGoogle Scholar
  34. 34.
    Harford C, Sarkar B (1997) Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc Chem Res 30:123–130CrossRefGoogle Scholar
  35. 35.
    Deng D, Liu L, Bu Y, Liu X, Wang X, Zhang B (2018) Electrochemical sensing devices using ATCUN-Cu(II) complexes as electrocatalysts for water oxidation. Sensors Actuators B Chem 269:189–194CrossRefGoogle Scholar
  36. 36.
    Xia N, Deng D, Yang S, Hao Y, Wang L, Liu Y, An C, Han Q, Liu L (2019) Electrochemical immunosensors with protease as the signal label for the generation of peptide-Cu(II) complexes as the electrocatalysts toward water oxidation. Sensors Actuators B Chem 291:113–119CrossRefGoogle Scholar
  37. 37.
    Hu P, Wang X, Wei L, Dai R, Yuan X, Huang K, Chen P (2019) Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein. J Mater Chem B 7:4778–4783CrossRefGoogle Scholar
  38. 38.
    Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184:3049–3067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Chemistry and Materials ScienceGuizhou Education UniversityGuizhouPeople’s Republic of China
  2. 2.Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical EngineeringAnyang Normal UniversityAnyangPeople’s Republic of China

Personalised recommendations