Microchimica Acta

, 187:115 | Cite as

Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles

  • Jiawei Wang
  • Pengjuan NiEmail author
  • Chuanxia Chen
  • Yuanyuan JiangEmail author
  • Chenghui Zhang
  • Bo Wang
  • Bingqiang Cao
  • Yizhong LuEmail author
Original Paper


Core-shell palladium cube@CeO2 (Pd cube@CeO2) nanoparticles are shown to display oxidase-like activity. This is exploited in a method for determination of the activity of alkaline phosphatase (ALP). The Pd cube@CeO2 nanoparticles were thermally synthesized from Ce(NO3)3, L-arginine and preformed Pd cube seeds in water. The Pd cube@CeO2 nanoparticles catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. This results in the formation of oxidized TMB (oxTMB) with an absorption peak at 652 nm. Ascorbic acid (AA) is generated from the hydrolysis of L-ascorbic acid 2-phosphate (AAP) catalyzed by ALP. It can reduce oxTMB to TMB, and this results in a decrease of the absorbance. The method allows for quantitative determination of the activity of ALP in the range from 0.1 to 4.0 U·L−1 and with a detection limit down to 0.07 U·L−1. Endowed with high sensitivity and selectivity, the assay can quantify ALP activity in biological system with satisfactory results.

Graphical abstract

Schematic illustration of Pd cube@CeO2 core-shell nanoparticles for colorimetric determination of alkaline phosphatase.


Alkaline phosphatase Ascorbic acid Cerium oxide Pd cube 3,3′,5,5′-tetramethylbenzidine Oxidase mimic Colorimetric assay Ascorbic acid 2-phosphate Nanozyme 



This work was financially supported by the National Natural Science Foundation of China (21705056, 21904048, 21902061 and 21902062), the Young Taishan Scholars Program (tsqn201812080), the Natural Science Foundation of Shandong Province (ZR2019YQ10, ZR2017MB022, ZR2018BB057 and ZR2018PB009) and the Doctoral Funds of University of Jinan (160100445).

Supplementary material

604_2019_4070_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1295 kb)


  1. 1.
    Liu J, Tang D, Chen Z, Yan X, Zhong Z, Kang L, Yao J (2017) Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosens Bioelectron 94:271–277CrossRefGoogle Scholar
  2. 2.
    Sun J, Hu T, Chen C, Zhao D, Yang F, Yang X (2016) Fluorescence immunoassay system via enzyme-enabled in situ synthesis of fluorescent silicon nanoparticles. Anal Chem 88:9789–9795CrossRefGoogle Scholar
  3. 3.
    Park K, Lee C, Park H (2014) A sensitive dual colorimetric and fluorescence system for assaying the activity of alkaline phosphatase that relies on pyrophosphate inhibition of the peroxidase activity of copper ions. Analyst 139:4691–4695CrossRefGoogle Scholar
  4. 4.
    Johnson L, Lewis R (2001) Structural basis for control by phosphorylation. Chem Rev 101:2209–2242CrossRefGoogle Scholar
  5. 5.
    Liu Y, Xiong E, Li X, Li J, Zhang X, Chen J (2017) Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification. Biosens Bioelectron 87:970–975CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Chen Z, Wang S, Cheng F, Chen L (2015) Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphatase. ACS Appl Mater Interfaces 7:27639–27645CrossRefGoogle Scholar
  7. 7.
    Jiang H, Wang X (2012) Alkaline phosphatase-responsive anodic electrochemiluminescence of CdSe nanoparticles. Anal Chem 84:6986–6993CrossRefGoogle Scholar
  8. 8.
    Liu J, Lin L, Jiao L, Cui M, Wang X, Zhang L, Zheng Z (2012) CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay. Talanta 98:137–144CrossRefGoogle Scholar
  9. 9.
    Zeng Y, Ren J, Wang S, Mai J, Qu B, Zhang Y, Shen A, Hu J (2017) Rapid and reliable detection of alkaline phosphatase by a hot spots amplification strategy based on well-controlled assembly on single nanoparticle. ACS Appl Mater Interfaces 9:29547–29553CrossRefGoogle Scholar
  10. 10.
    Song H, Wang H, Li X, Peng Y, Pan J, Niu X (2018) Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions. Anal Chim Acta 1044:154–161CrossRefGoogle Scholar
  11. 11.
    Babson A, Greeley S, Coleman C, Phillips G (1966) Phenolphthalein monophosphate as a substrate for serum alkaline phosphatase. Clin Chem 12:482–490PubMedGoogle Scholar
  12. 12.
    Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan A (2018) Colorimetric aptasensor for campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Microchim Acta 185:448CrossRefGoogle Scholar
  13. 13.
    Wu J, Qin K, Yuan D, Tan J, Qin L, Zhang X, Wei H (2018) Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl Mater Interfaces 10:12954–12959CrossRefGoogle Scholar
  14. 14.
    Wang S, Yan H, Wang Y, Wang N, Lin Y, Li M (2019) Hollow Prussian blue nanocubes as peroxidase mimetic and enzyme carriers for colorimetric determination of ethanol. Microchim Acta 186:738CrossRefGoogle Scholar
  15. 15.
    Li W, Fan G, Gao F, Cui Y, Wang W, Luo X (2019) High-activity Fe3O4 nanozyme as signal amplifier: a simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens Bioelectron 127:64–71CrossRefGoogle Scholar
  16. 16.
    Li S, Zhao X, Yu X, Wan Y, Yin M, Zhang W, Cao B, Wang H (2019) Fe3O4nanozymes with aptamer-tuned catalysis for selective colorimetric analysis of ATP in blood. Anal Chem 91:14737–14742CrossRefGoogle Scholar
  17. 17.
    Yin M, Li S, Wan Y, Feng L, Zhao X, Zhang S, Liu S, Cao P, Wang H (2019) A selective colorimetric strategy for probing dopamine and levodopa through the mussel-inspired enhancement of Fe3O4 catalysis. Chem Commun 55:12008–12011CrossRefGoogle Scholar
  18. 18.
    Ali M, Khalid M, Shah I, Kim S, Kim Y, Lim J, Choi K (2019) Paper-based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device. New J Chem 43:7636–7645CrossRefGoogle Scholar
  19. 19.
    Wang H, Li S, Si Y, Zhang N, Sun Z, Wu H, Lin Y (2014) Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale 6:8107–8116CrossRefGoogle Scholar
  20. 20.
    Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105CrossRefGoogle Scholar
  21. 21.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093CrossRefGoogle Scholar
  22. 22.
    Wu T, Hou W, Ma Z, Liu M, Liu X, Zhang Y, Yao S (2019) Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian blue nanocubes. Microchim Acta 186:123CrossRefGoogle Scholar
  23. 23.
    Wang C, Gao J, Cao Y, Tan H (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81CrossRefGoogle Scholar
  24. 24.
    Liu B, Huang Z, Liu J (2016) Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F detection. Nanoscale 8:13562–13567CrossRefGoogle Scholar
  25. 25.
    Jiang L, Fernandez-Garcia S, Tinoco M, Yan Z, Xue Q, Blanco G, Calvino J, Hungria A, Chen X (2017) Improved oxidase mimetic activity by praseodymium incorporation into ceria nanocubes. ACS Appl Mater Interfaces 9:18595–18608CrossRefGoogle Scholar
  26. 26.
    Ni P, Chen C, Jiang Y, Zhang C, Wang B, Cao B, Li C, Lu Y (2019) Gold nanoclusters-based dual-channel assay for colorimetric and turn-on fluorescent sensing of alkaline phosphatase. Sensors Actuators B Chem 301:127080CrossRefGoogle Scholar
  27. 27.
    Wang X, Zhang Y, Song S, Yang X, Wang Z, Jin R, Zhang H (2016) L-arginine-triggered self-assembly of CeO2 nanosheaths on palladium nanoparticles in water. Angew Chem Int Ed 55:4542–4546CrossRefGoogle Scholar
  28. 28.
    Asati A, Santra S, Kaittanis C, Nath S, Perez J (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2312CrossRefGoogle Scholar
  29. 29.
    Chen H, Zhou Z, Lu Q, Wu C, Liu M, Zhang Y, Yao S (2019) Molecular structure regulation and enzyme cascade signal amplification strategy for upconversion ratiometric luminescent and colorimetric alkaline phosphatase detection. Anal Chim Acta 1051:160–168CrossRefGoogle Scholar
  30. 30.
    Liu H, Li M, Xia Y, Ren X (2017) A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Appl Mater Interfaces 9:120–126CrossRefGoogle Scholar
  31. 31.
    Deng J, Yu P, Wang Y, Mao L (2015) Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal Chem 87:3080–3086CrossRefGoogle Scholar
  32. 32.
    Chen C, Yuan Q, Ni P, Jiang Y, Zhao Z, Lu Y (2018) Fluorescence assay for alkaline phosphatase based on ATP hydrolysis-triggered dissociation of cerium coordination polymer nanoparticles. Analyst 143:3821–3828CrossRefGoogle Scholar
  33. 33.
    Chen C, Zhang G, Ni P, Jiang Y, Lu Y, Lu Z (2019) Fluorometric and colorimetric dual-readout alkaline phosphatase activityassay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect. Microchim Acta 186:10CrossRefGoogle Scholar
  34. 34.
    Liu S, Han L, Li N, Xiao N, Ju Y, Li N, Luo H (2018) A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes. J Mater Chem B 6:2843–2850CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanChina
  2. 2.Department of Physics and Institute of LaserQufu Normal UniversityQufuChina

Personalised recommendations