Microchimica Acta

, 187:3 | Cite as

Using zinc ion-enhanced fluorescence of sulfur quantum dots to improve the detection of the zinc(II)-binding antifungal drug clioquinol

  • Jie Zhao
  • Zhefeng FanEmail author
Original Paper


A turn on–off fluorometric assay for clioquinol (CQ) is described here. It is based on modulation of the fluorescence of sulfur quantum dots (SQDs; best measured at excitation/emission wavelengths of 360/426 nm) by using the Zn2+-CQ affinity pair. Although the fluorescence enhancement effect of Zn2+ on SQDs was not obvious, a good quenching modulation effect was observed in the presence of CQ. This resulted in a linear analytical range that is increased by two orders of magnitude (from 0.024 μM to 0.24 μM, and 0.62 μM to 30 μM), with a detection limit (3 s) of 0.015 μM. The selectivity of the method is also improved.

Graphical abstract

Schematic illustration of the turn on-off fluorometric assay for for clioquinol (CQ) based on Zn2+-modulated sulfur quantum dots (SQDs).


Indicator displacement assay Turn on-off fluorescence Biological fluids 



This work was supported by National Natural Science Foundation of China (31700876, 31700862), Natural Science Foundation of Shanxi Province (201601D021106), Basic Research Program of Shanxi Normal University (ZR1602).

Supplementary material

604_2019_4020_MOESM1_ESM.docx (13.9 mb)
ESM 1 (DOCX 14277 kb)


  1. 1.
    Hill V, Wong E, Corbett M, Menday A (1998) Comparative efficacy of betamethasone/clioquinol (Betnovate-C) cream and betamethasone/fusidic acid (Fucibet) cream in the treatment of infected hand eczema. J Dermatol Treat 9(1):15–19CrossRefGoogle Scholar
  2. 2.
    Park M-H, Lee S-J, H-r B, Kim Y, Oh YJ, Koh J-Y, Hwang JJ (2011) Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiol Dis 42(3):242–251CrossRefGoogle Scholar
  3. 3.
    Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P (2004) Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: structural characterization of its zinc (II) and copper (II) complexes. Inorg Chem 43(13):3795–3797CrossRefGoogle Scholar
  4. 4.
    Priel T, Aricha-Tamir B, Sekler I (2007) Clioquinol attenuates zinc-dependent β-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol 565(1–3):232–239CrossRefGoogle Scholar
  5. 5.
    Costello LC, Franklin RB (2016) A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys 611:100–112CrossRefGoogle Scholar
  6. 6.
    Mitrović A, Kljun J, Sosič I, Gobec S, Turel I, Kos J (2016) Clioquinol–ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton T 45(42):16913–16921CrossRefGoogle Scholar
  7. 7.
    León IE, Díez P, Baran EJ, Etcheverry SB, Fuentes M (2017) Decoding the anticancer activity of VO-clioquinol compound: the mechanism of action and cell death pathways in human osteosarcoma cells. Metallomics 9(7):891–901CrossRefGoogle Scholar
  8. 8.
    Mao X, Li X, Sprangers R, Wang X, Venugopal A, Wood T, Zhang Y, Kuntz D, Coe E, Trudel S (2009) Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma. Leukemia 23(3):585CrossRefGoogle Scholar
  9. 9.
    Tehrani R, Ostrowski RA, Hariman R, Jay WM (2008) Ocular toxicity of hydroxychloroquine. Semin Ophthalmol 23(3):201–209CrossRefGoogle Scholar
  10. 10.
    Tateishi J (2000) Subacute myelo-optico-neuropathy: Clioquinol intoxication in humans and animals. Neuropathology 20:20–24CrossRefGoogle Scholar
  11. 11.
    Gimenez-Izquierdo J, Guiteras J, Izquierdo A, Prat M (1991) Spectrofluorimetric determination of clioquinol in pharmaceutical preparations. Fresenius J Anal Chem 341(10):638–640CrossRefGoogle Scholar
  12. 12.
    Bondiolotti G, Pollera C, Pirola R, Bareggi S (2006) Determination of 5-chloro-7-iodo-8-quinolinol (clioquinol) in plasma and tissues of hamsters by high-performance liquid chromatography and electrochemical detection. J Chromatogr B 837(1–2):87–91CrossRefGoogle Scholar
  13. 13.
    Zhang WW, He XL, Deng N, Wang Y, He JB (2014) Monitoring of intermediates of clioquinol electro-oxidation by thin-layer spectral and electrophoretic electrochemistry. Electrochim Acta 127:403–409CrossRefGoogle Scholar
  14. 14.
    Belal F, El-Din MKS, El Enany N, Saad S (2013) A validated liquid chromatographic method for the simultaneous determination of betamethasone valerate and clioquinol in creams using time programmed UV detection. Anal Methods 5(23):6767–6773CrossRefGoogle Scholar
  15. 15.
    Abdel-Aleem EA, Hegazy MA, Sayed NW, Abdelkawy M, Abdelfatah RM (2015) Novel spectrophotometric determination of flumethasone pivalate and clioquinol in their binary mixture and pharmaceutical formulation. Spectrochim Acta A 136:707–713CrossRefGoogle Scholar
  16. 16.
    Wang J, Chang Y, Zhang P, Lie SQ, Gao PF, Huang CZ (2015) Cu2+-mediated fluorescence switching of gold nanoclusters for the selective detection of clioquinol. Analyst 140(24):8194–8200CrossRefGoogle Scholar
  17. 17.
    Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim KS, Yetisen AK, Yun SH, Kwon W (2018) Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv Mater 30(10):1701460CrossRefGoogle Scholar
  18. 18.
    Karthik R, Vinoth Kumar J, Chen SM, Seerangan K, Karuppiah C, Chen TW, Muthuraj V (2017) Investigation on the electrocatalytic determination and photocatalytic degradation of neurotoxicity drug clioquinol by Sn (MoO4) 2 nanoplates. ACS Appl Mater Inter 9(31):26582–26592CrossRefGoogle Scholar
  19. 19.
    Hu H, He H, Zhang J, Hou X, Wu P (2018) Optical sensing at the nanobiointerface of metal ion-optically-active nanocrystals. Nanoscale 10(11):5035–5046CrossRefGoogle Scholar
  20. 20.
    He H, Li C, Tian Y, Wu P, Hou X (2016) Phosphorescent differential sensing of physiological phosphates with lanthanide ions-modified Mn-doped ZnCdS quantum dots. Anal Chem 88(11):5892–5897CrossRefGoogle Scholar
  21. 21.
    Wu P, Yan X-P (2010) Ni2+−modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosens Bioelectron 26(2):485–490CrossRefGoogle Scholar
  22. 22.
    Gong Y, Fan Z (2015) Highly selective manganese-doped zinc sulfide quantum dots based label free phosphorescent sensor for phosphopeptides in presence of zirconium (IV). Biosens Bioelectron 66:533–538CrossRefGoogle Scholar
  23. 23.
    Wu Y, Liu X, Wu Q, Yi J, Zhang G (2017) Carbon nanodots-based fluorescent turn-on sensor array for biothiols. Anal Chem 89(13):7084–7089CrossRefGoogle Scholar
  24. 24.
    Pu Y, Cai F, Wang D, Wang JX, Chen JF (2018) Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res 57(6):1790–1802CrossRefGoogle Scholar
  25. 25.
    Shen L, Wang H, Liu S, Bai Z, Zhang S, Zhang X, Zhang C (2018) Assembling of sulfur quantum dots in fission of sublimed sulfur. J Am Chem Soc 140(25):7878–7884CrossRefGoogle Scholar
  26. 26.
    Li S, Chen D, Zheng F, Zhou H, Jiang S, Wu Y (2014) Water-soluble and lowly toxic Sulphur quantum dots. Adv Funct Mater 24(45):7133–7138CrossRefGoogle Scholar
  27. 27.
    Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8(8):1535–1550CrossRefGoogle Scholar
  28. 28.
    Pompa P, Martiradonna L, Della Torre A, Della Sala F, Manna L, De Vittorio M, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1(2):126–130CrossRefGoogle Scholar
  29. 29.
    Ray K, Badugu R, Lakowicz JR (2006) Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. J Am Chem Soc 128(28):8998–8999CrossRefGoogle Scholar
  30. 30.
    Geng S, Lin SM, Li NB, Luo HQ (2017) Polyethylene glycol capped ZnO quantum dots as a fluorescent probe for determining copper (II) ion. Sensors Actuators B Chem 253:137–143CrossRefGoogle Scholar
  31. 31.
    Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, BerlinGoogle Scholar
  32. 32.
    Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro JP (2007) Stoichiometry and conditional stability constants of cu (II) or Zn (II) clioquinol complexes; implications for Alzheimer's and Huntington's disease therapy. Neurotoxicology 28(3):445–449CrossRefGoogle Scholar
  33. 33.
    Rodríguez-Santiago L, Alí-Torres J, Vidossich P, Sodupe M (2015) Coordination properties of a metal chelator clioquinol to Zn2+ studied by static DFT and ab initio molecular dynamics. PCCP 17(20):13582–13589CrossRefGoogle Scholar
  34. 34.
    Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Advan 3(26):10471–10478CrossRefGoogle Scholar
  35. 35.
    Shankar S, Pangeni R, Park JW, Rhim J-W (2018) Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mat Sci Eng C-Mater 92:508–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Materials ScienceShanxi Normal UniversityLinfenPeople’s Republic of China

Personalised recommendations