Advertisement

Microchimica Acta

, 186:860 | Cite as

Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA–dye complex

  • Haiyu Li
  • Shounian Ding
  • Wan Wang
  • Qing Lv
  • Zhijuan Wang
  • Hua Bai
  • Qing ZhangEmail author
Original Paper
  • 86 Downloads

Abstract

An aptasensor is described for the electrochemical determination of bisphenol A (BPA). Gold-coated multiwalled carbon nanotubes (Au/MWCNTs) and a single-stranded DNA-dye complex are used as a double signal-amplification system. The BPA-binding aptamer was assembled on a disposable electrode modified with Au/MWCNTs. Methylene blue (MB) was then intercalated into the immobilized aptamer with an approximately molecular ratio of 4 to form a complex. Upon interaction with BPA, the immobilized aptamer underwent a conformational change. This causes the intercalated MB to be released from the complex into solution. As a result, the electrochemical signal of the intercalated MB, typically measured using square wave voltammetry at a potential of −0.20 V (vs. Ag/AgCl (saturated KCl)) decreases. The fabrication of the aptasensor was characterized by the scanning electron microscopy, atomic force microscopy, and electrochemical techniques. Under optimal experimental conditions, the current drops linearly with the logarithm of BPA concentrations over the range from 10 fM to 1 nM, and the limit of detection is 8 fM. The assay was applied to the determination of BPA in plastic drinking bottles, tap water, and milk.

Graphical Abstract

Schematic illustration of fabricating the aptasensor for bisphenol A (BPA) based on double signal amplification via gold-coated multiwalled carbon nanotubes (Au/MWCNT) and an aptamer–dye complex. PET: poly(ethylene terephthalate).

Keywords

Nanomaterial Methylene blue Square wave voltammetry Electroanalysis Disposable electrode 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Dean Foundation of Chinese Academy of Inspection and Quarantine (2017JK041) and the National Key Research and Development Program of China (2016YFF0203703).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_4006_MOESM1_ESM.doc (184 kb)
ESM 1 (DOC 184 kb)

References

  1. 1.
    Vom Saal FS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol a shows the need for a new risk assessment. Environ Health Perspect 113:926–933.  https://doi.org/10.1289/ehp.7713 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mandrah K, Satyanarayana GNV, Roy SK (2017) A dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry for the determination of nine bisphenols in bottled carbonated beverages. J Chromatogr A 1528:10–17.  https://doi.org/10.1016/j.chroma.2017.10.071 CrossRefPubMedGoogle Scholar
  3. 3.
    Owczarek K, Kubica P, Kudłak B, Rutkowska A, Konieczna A, Rachoń D, Namieśnik J, Wasik A (2018) Determination of trace levels of eleven bisphenol a analogues in human blood serum by high performance liquid chromatography-tandem mass spectrometry. Sci Total Environ 628:1362–1368.  https://doi.org/10.1016/j.scitotenv.2018.02.148 CrossRefPubMedGoogle Scholar
  4. 4.
    Pellegrino Vidal RB, Ibañez GA, Escandar GM (2015) Chemometrics-assisted cyclodextrin-enhanced excitation-emission fluorescence spectroscopy for the simultaneous green determination of bisphenol a and nonylphenol in plastics. Talanta 143:162–168.  https://doi.org/10.1016/j.talanta.2015.05.030 CrossRefGoogle Scholar
  5. 5.
    Lee ES, Kim GB, Ryu SH, Kim H, Yoo HH, Yoon MY, Lee JW, Gye MC, Kim YP (2018) Fluorescing Aptamer-gold nanosensors for enhanced sensitivity to Bisphenol a. Sensors Actuators B Chem 260:371–379.  https://doi.org/10.1016/j.snb.2018.01.018 CrossRefGoogle Scholar
  6. 6.
    Ren S, Li Q, Li Y, Li S, Han T, Wang J, Peng Y, Bai J, Ning B, Gao Z (2019) Upconversion fluorescent aptasensor for bisphenol a and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons. Microchim Acta 186(3):151–158.  https://doi.org/10.1007/s00604-019-3266-3 CrossRefGoogle Scholar
  7. 7.
    Ragavan KV, Rastogi NK, Thakur MS (2013) Sensors and biosensors for analysis of bisphenol-a. Trends Anal Chem 52:248–260.  https://doi.org/10.1016/j.trac.2013.09.006 CrossRefGoogle Scholar
  8. 8.
    Nguyen VT, Kwon YS, Gu MB (2017) Aptamer-based environmental biosensors for small molecule contaminants. Curr Opin Biotechnol 45:15–23.  https://doi.org/10.1016/j.copbio.2016.11.020 CrossRefPubMedGoogle Scholar
  9. 9.
    Huang Y, Li XF, Zheng SN (2016) A novel and label-free immunosensor for bisphenol a using rutin as the redox probe. Talanta 160:241–246.  https://doi.org/10.1016/j.talanta.2016.07.017 CrossRefPubMedGoogle Scholar
  10. 10.
    Alkasir RSJ, Ganesana M, Won YH, Stanciu L, Andreescu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol a. Biosens Bioelectron 26:43–49.  https://doi.org/10.1016/j.bios.2010.05.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Xu JY, Li Y, Bie JX, Jiang W, Guo JJ, Luo YL, Shen F, Sun CY (2015) Colorimetric method for determination of bisphenol a based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 182:2131–2138.  https://doi.org/10.1007/s00604-015-1547-z CrossRefGoogle Scholar
  12. 12.
    Qin J, Shen J, Xu X, Yuan Y, He G, Chen H (2018) A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol a. Microchim Acta 185:459–466.  https://doi.org/10.1007/s00604-018-2998-9 CrossRefGoogle Scholar
  13. 13.
    Pan DD, Gu YY, Lan HZ, Sun YY, Gao HJ (2015) Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol a. Anal Chim Acta 853:297–302.  https://doi.org/10.1016/j.aca.2014.11.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Ashraf G, Asif M, Aziz A, Wang Z, Qiu X, Huang Q, Xiao F, Liu H (2019) Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol a. Microchim Acta 186:337–339.  https://doi.org/10.1007/s00604-019-3406-9 CrossRefGoogle Scholar
  15. 15.
    Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H (2018) Voltammetric aptasensor for bisphenol a based on the use of a MWCNT/Fe3O4@gold nanocomposite. Microchim Acta 185:320–329.  https://doi.org/10.1007/s00604-018-2838-y CrossRefGoogle Scholar
  16. 16.
    Li HY, Wang W, Lv Q, Xi GC, Bai H, Zhang Q (2016) Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol a. Electrochem Commun 68:104–107.  https://doi.org/10.1016/j.elecom.2016.05.010 CrossRefGoogle Scholar
  17. 17.
    Deiminiat B, Rounaghi GH, Arbab-Zavar MH, Razavipanah I (2017) A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol a. Sensors Actuators B Chem 242:158–166.  https://doi.org/10.1016/j.snb.2016.11.041 CrossRefGoogle Scholar
  18. 18.
    Cao HX, Wang L, Pan CG, He YS, Liang GX (2018) Aptamer based electrochemiluminescent determination of bisphenol a by using carboxylated graphitic carbon nitride. Microchim Acta 185:463–468.  https://doi.org/10.1007/s00604-018-2997-x CrossRefGoogle Scholar
  19. 19.
    Derikvandi Z, Abbasi AR, Roushani M, Derikvand Z, Azadbakht A (2016) Design of ultrasensitive bisphenol A-aptamer based on Pt nanoparticles loading to Polyethyleneimine functionalized carbon nanotubes. Anal Biochem 512:47–57.  https://doi.org/10.1016/j.ab.2016.06.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Yu ZH, Luan YN, Li HY, Wang W, Wang XY, Zhang Q (2019) A disposable electrochemical aptasensor using single-stranded DNA–methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol a. Sensors Actuators B Chem 284:73–80.  https://doi.org/10.1016/j.snb.2018.12.126 CrossRefGoogle Scholar
  21. 21.
    Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee D, Hong S, Kim S (2011) Development of single-stranded DNA aptamers for specific bisphenol a detection. Oligonucleotides 21:85–91.  https://doi.org/10.1089/oli.2010.0267 CrossRefGoogle Scholar
  22. 22.
    Wang W, Bai H, Li HY, Lv Q, Wang ZJ, Zhang Q (2017) Disposable plastic electrode for electrochemical determination of total chromium and hexavalent chromium. J Electroanal Chem 794:148–155.  https://doi.org/10.1016/j.jelechem.2017.04.016 CrossRefGoogle Scholar
  23. 23.
    Wang W, Bai H, Li HY, Lv Q, Zhang Q, Bao N (2016) Carbon tape coated with gold film as stickers for bulk fabrication of disposable gold electrodes to detect Cr(VI). Sensors Actuators B Chem 236:218–225.  https://doi.org/10.1016/j.snb.2016.05.155 CrossRefGoogle Scholar
  24. 24.
    Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N (2015) Highly sensitive electrochemical biosensor for bisphenol a detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron 74:830–835.  https://doi.org/10.1016/j.bios.2015.07.051 CrossRefPubMedGoogle Scholar
  25. 25.
    Yang JC, Wang X, Zhang DF, Wang LL, Li Q, Zhang L (2014) Simultaneous determination of endocrine disrupting compounds bisphenol F and bisphenol AF using carboxyl functionalized multi-walled carbon nanotubes modified electrode. Talanta 130:207–212.  https://doi.org/10.1016/j.talanta.2014.06.056 CrossRefPubMedGoogle Scholar
  26. 26.
    Bard AJ, Faulkner LR (2011) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  27. 27.
    Beiranvand ZS, AbbasiAR DS, Karimi Z, Azadbakht A (2017) Aptamer-based electrochemical biosensor by using au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Anal Biochem 518:35–45.  https://doi.org/10.1016/j.ab.2016.10.001 CrossRefPubMedGoogle Scholar
  28. 28.
    Liu YJ, Liu Y, Liu BH (2016) A dual-signaling strategy for ultrasensitive detection of bisphenol a by aptamer-based electrochemical biosensor. J Electroanal Chem 781:265–271.  https://doi.org/10.1016/j.jelechem.2016.06.048 CrossRefGoogle Scholar
  29. 29.
    Liu YQ, Zhang X, Yang JS, Xiong EH, Zhang XH, Chen JH (2016) Sensitive detection of bisphenol a based on ratiometric electrochemical aptasensor. Can J Chem 94:509–514.  https://doi.org/10.1139/cjc-2015-0533 CrossRefGoogle Scholar
  30. 30.
    Xue F, Wu JJ, Chu HQ, Mei ZL, Ye YK, Liu J, Zhang R, Peng CF, Zheng L, Chen W, (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchimica Acta 180 (1-2):109-115CrossRefGoogle Scholar
  31. 31.
    Ye SJ, Ye RB, Shi YD, Qiu B, Guo LH, Huang DH, Lin ZY, Chen GN, (2017) Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A. Analytical and Bioanalytical Chemistry 409 (30):7145-7151CrossRefGoogle Scholar
  32. 32.
    Yu P, Liu YQ, Zhang XH, Zhou JW, Xiong EH, Li XY, Chen JH, (2016) A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosensors and Bioelectronics 79:22-28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chinese Academy of Inspection and QuarantineBeijingChina
  2. 2.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations