Microchimica Acta

, 186:848 | Cite as

Colorimetric determination of the activities of tyrosinase and catalase via substrate-triggered decomposition of MnO2 nanosheets

  • Xian-En Zhao
  • Ya-Nan Zuo
  • Xiaoqing Qu
  • Jing Sun
  • Lingyuan Liu
  • Shuyun ZhuEmail author
Original Paper


The authors describe novel colorimetric assays for tyrosinase (TYR) and catalase (CAT) based on the substrate-triggered decomposition of MnO2 nanosheets (NSs). The MnO2 NSs can act as oxidase mimics that catalyze the oxidation of the substrate tetramethylbenzidine (TMB) to form a blue dye with an absorption maximum at 652 nm. The oxidase-mimicking activity of the MnO2 NSs is inhibited by dopamine (DA)/hydrogen peroxide (H2O2) due to their decomposition of the MnO2 NSs. TYR catalyzes the oxidation of DA while CAT can decompose H2O2 into water and oxygen. Therefore, the oxidase-mimicking activity of MnO2 NSs is restored in the presence of both enzymes and their substrates. Based on the competitive consumption of substrates between enzymes and MnO2 NSs, a colorimetric method for determination of enzyme activity and its substrate is developed. The detection limits for TYR and CAT are 6 mU·mL−1 and 33 mU·mL−1, respectively.

Graphical abstract

A colorimetric method for monitoring enzyme activity and its substrate is described. It is based on the substrate-inhibited oxidase-mimicking activity of MnO2 nanosheets.


Two-dimensional nanomaterials Oxidase mimic Nanozyme Dopamine Hydrogen peroxide 3,3′,5,5’-Tetramethylbenzidine Catalytic oxidation Enzyme activities Human serum analysis 



This work is kindly supported by the National Natural Science Foundation of China (Nos. 21405094, 21775088, and 81403051), the Natural Science Foundation of Qinghai Province of China (2016-ZJ-955), and the Development Project of Qinghai Key Laboratory (No. 2017-ZJ-Y10), and the Student Research Training Program of Qufu Normal University (2018A055).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

604_2019_3995_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1.35 mb)


  1. 1.
    Li S, Mao LY, Tian YP, Wang J, Zhou ND (2012) Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles. Analyst 137:823–825CrossRefGoogle Scholar
  2. 2.
    Sharma AK, Pandey S, Nerthigan Y, Swaminathan N, Wu HF (2018) Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase (CK-MM). Anal Chim Acta 1024:161–168CrossRefGoogle Scholar
  3. 3.
    Kim GB, Kim KH, Park YH, Ko S, Kim YP (2013) Colorimetric assay of matrix metalloproteinase activity based on metal-induced self-assembly of carboxy gold nanoparticles. Biosens Bioeletron 41:833–839CrossRefGoogle Scholar
  4. 4.
    Baron R, Zayats M, Willner I (2005) Dopamine-, l-DOPA-, adrenaline-, and noradrenaline-induced growth of au nanoparticles: assays for the detection of neurotransmitters and tyrosinase activity. Anal Chem 77:1566–1571CrossRefGoogle Scholar
  5. 5.
    Shen L, Wang C, Chen J (2017) Photometric determination of the activity of cellulase and xylanase via measurement of formation of gold nanoparticles. Microchim Acta 184:163–168CrossRefGoogle Scholar
  6. 6.
    Wei H, Chen CG, Han BY, Wang EK (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055CrossRefGoogle Scholar
  7. 7.
    Gao J, Jia MN, Xu YY, Zheng JM, Shao N, Zhao MP (2018) Prereduction-promoted enhanced growth of silver nanoparticles for ultrasensitive colorimetric detection of alkaline phosphatase and carbohydrate antigen 125. Talanta 189:129–136CrossRefGoogle Scholar
  8. 8.
    Liu BW, Huang PC, Li JF, Wu FY (2017) Colorimetric detection of tyronsinase during the synthesis of kojic acid/silver nanoparticles under illumination. Sensor Actuator B 251:836–841CrossRefGoogle Scholar
  9. 9.
    Xie JX, Zhang XD, Wang H, Zheng HZ, Huang YM (2012) Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal Chem 39:114–129CrossRefGoogle Scholar
  10. 10.
    Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN (2013) Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron 49:519–524CrossRefGoogle Scholar
  11. 11.
    Liu YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105CrossRefGoogle Scholar
  12. 12.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRefGoogle Scholar
  13. 13.
    Liu Y, Wu HH, Chong Y, Wamer WG, Xia QS, Cai LN, Nie ZH, Fu PP, Yin JJ (2015) Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl Mater Interfaces 7:19709–19717CrossRefGoogle Scholar
  14. 14.
    Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019CrossRefGoogle Scholar
  15. 15.
    Shi WN, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697CrossRefGoogle Scholar
  16. 16.
    Zhu SY, Zhao EN, You JM, Xu GB, Wang H (2015) Carboxylic-group-functionalized single-walled carbon nanohorns as perxodiase mimetics and their application to glucose detection. Analyst 140:6398–6403CrossRefGoogle Scholar
  17. 17.
    Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WE, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509CrossRefGoogle Scholar
  18. 18.
    Yin JF, Cao HQ, Lu YX (2012) Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J Mater Chem 22:527–534CrossRefGoogle Scholar
  19. 19.
    Ai LH, Li LL, Zhang CH, Fu J, Jiang J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem Eur J 19:15105–15108CrossRefGoogle Scholar
  20. 20.
    Xie JX, Cao HY, Jiang H, Chen YJ, Shi WB, Zheng HZ, Huang YM (2013) Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta 796:92–100CrossRefGoogle Scholar
  21. 21.
    Zhai WY, Wang CX, Yu P, Wang YX, Mao LQ (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213CrossRefGoogle Scholar
  22. 22.
    Liu J, Meng LJ, Fei ZF, Dyson PJ, Jing XA, Liu X (2017) MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron 90:69–74CrossRefGoogle Scholar
  23. 23.
    Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133(50):20168–20171CrossRefGoogle Scholar
  24. 24.
    Yan GW, Zhang Y, Di WH (2018) An enzymatic reaction mediated glucose sensor activated by MnO2 nanosheets acting as an oxidant and catalyst. Analyst 143:2915–2922CrossRefGoogle Scholar
  25. 25.
    Tian FY, Zhou J, Jiao BN, He Y (2019) A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin a. Nanoscale 11(19):9547–9555CrossRefGoogle Scholar
  26. 26.
    Gan Y, Hu N, He CJ, Zhou SQ, Tu JW, Liang T, Pan YX, Kirsanov D, Legin A, Wan H, Wang P (2019) MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye. Biosens Bioelectron 130:254–261CrossRefGoogle Scholar
  27. 27.
    He LY, Lu YX, Wang FY, Jing WJ, Chen Y, Liu YY (2018) Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensor Actuat B 254:468–474CrossRefGoogle Scholar
  28. 28.
    Song H, Wang YH, Wang GQ, Wei HY, Luo SZ (2017) Ultrathin two-dimensional MnO2 nanosheet as a stable coreactant of 3,3′,5,5′-tetramethylbenzidine chromogenic substrate for visual and colorimetric detection of iron(II) ion. Microchim Acta 184:3399–3404CrossRefGoogle Scholar
  29. 29.
    Yan X, Song Y, Wu XL, Zhu CZ, Su XG, Du D, Lin YH (2017) Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 9(6):2317–2323CrossRefGoogle Scholar
  30. 30.
    Zhu SY, Lei CH, Sun J, Zhao XE, Wang X, Yan XL, Liu W, Wang H (2019) Probing NAD+/NADH-dependent biocatalytic transformations based on oxidase mimics of MnO2. Sensor Actuat B 282:896–903CrossRefGoogle Scholar
  31. 31.
    Kong XJ, Wu S, Chen TT, Yu RQ, Chu X (2016) MnO2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. Nanoscale 8:15604–15610CrossRefGoogle Scholar
  32. 32.
    Ghavamipour F, Sajedi RH, Khajeh K (2018) A chemiluminescence-based catalase assay using H2O2-sensitive CdTe quantum dots. Microchim Acta 185:376CrossRefGoogle Scholar
  33. 33.
    Zhao G, Li J, Jiang L, Dong H, Wang X, Hu W (2012) Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudo supercapacitors. Chem Sci 3:433–437CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringQufu Normal UniversityQufu CityChina
  2. 2.Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau BiologyChinese Academy of SciencesXining CityChina

Personalised recommendations