Microchimica Acta

, 186:820 | Cite as

Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria

  • Ramin Pourakbari
  • Nasrin Shadjou
  • Hadi Yousefi
  • Ibrahim Isildak
  • Mehdi Yousefi
  • Mohammad-Reza Rashidi
  • Balal KhalilzadehEmail author
Review Article


This review (with 118 refs.) discusses the progress made in electroanalytical methods based on the use of organic and inorganic nanomaterials for the determination of bacteria, specifically of E. coli, Salmonella, Staphylococcus, Mycobacterium, Listeria and Klebsiella species. We also discuss advantages and limitations of electrochemical methods. Strategies based on the use of aptamers, DNA and antibodies are covered. Following an introduction into electrochemical biosensing, a first large section covers methods for pathogen detection using metal nanoparticles, with subsections on silver nanoparticles, gold nanoparticles, magnetic nanoparticles and carbon-based nanomaterials. A second large section covers methods based on the use of organic nanocomposites, graphene and its derivatives. Other nanoparticles are treated in a final section. Several tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses challenges, and gives an outlook on potential future trends.

Graphical abstract

This review demonstrates the progress made in electroanalytical methods based on the use of organic and inorganic nanomaterials for the detection and determination of pathogenic bacteria. We also discuss advantages and limitations of electrochemical methods. Strategies based on the use of aptamers, DNA and antibodies are covered.


Bioassay Metal nanoparticles Carbon allotropes Graphene Carbon nanotubes Nanocomposite Biotechnology Polymeric nanoparticles 



This work was supported by the Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, Iran. (Grant number: 60976).


  1. 1.
    Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217CrossRefGoogle Scholar
  2. 2.
    Maurer FP, Christner M, Hentschke M, Rohde H (2017) Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: implications for patient care and antimicrobial stewardship programs. Infectious disease reports 9(1):6839PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4(6):337–348PubMedCrossRefGoogle Scholar
  4. 4.
    Leoni E, Legnani P (2001) Comparison of selective procedures for isolation and enumeration of Legionella species from hot water systems. J Appl Microbiol 90(1):27–33PubMedCrossRefGoogle Scholar
  5. 5.
    Levi K, Smedley J, Towner K (2003) Evaluation of a real-time PCR hybridization assay for rapid detection of Legionella pneumophila in hospital and environmental water samples. Clin Microbiol Infect 9(7):754–758PubMedCrossRefGoogle Scholar
  6. 6.
    Garibyan L, Avashia N (2013) Research techniques made simple: polymerase chain reaction (PCR). The Journal of investigative dermatology 133(3):e6PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42(12):5425–5438PubMedCrossRefGoogle Scholar
  8. 8.
    Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426PubMedCrossRefGoogle Scholar
  9. 9.
    Nakhjavani SA, Khalilzadeh B, Pakchin PS, Saber R, Ghahremani MH, Omidi Y (2018) A highly sensitive and reliable detection of CA15-3 in patient plasma with electrochemical biosensor labeled with magnetic beads. Biosens Bioelectron 122:8–15CrossRefGoogle Scholar
  10. 10.
    Kasemo B (2002) Biological surface science. Surf Sci 500(1–3):656–677CrossRefGoogle Scholar
  11. 11.
    Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763PubMedCrossRefGoogle Scholar
  12. 12.
    Wang J (2006) Analytical electrochemistry. John Wiley & SonsGoogle Scholar
  13. 13.
    González-Fernández E, Avlonitis N, Murray AF, Mount AR, Bradley M (2016) Methylene blue not ferrocene: optimal reporters for electrochemical detection of protease activity. Biosens Bioelectron 84:82–88PubMedCrossRefGoogle Scholar
  14. 14.
    Mackey D, Killard AJ, Ambrosi A, Smyth MR (2007) Optimizing the ratio of horseradish peroxidase and glucose oxidase on a bienzyme electrode: comparison of a theoretical and experimental approach. Sensors Actuators B Chem 122(2):395–402CrossRefGoogle Scholar
  15. 15.
    Chen J-L, Chi Y, Chen K, Cheng Y-M, Chung M-W, Yu Y-C, Lee G-H, Chou P-T, Shu C-F (2009) New series of ruthenium (II) and osmium (II) complexes showing solid-state phosphorescence in far-visible and near-infrared. Inorg Chem 49(3):823–832CrossRefGoogle Scholar
  16. 16.
    Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199PubMedCrossRefGoogle Scholar
  17. 17.
    Kavita V (2017) DNA biosensors—a review. J Bioeng Biomed Sci 7:222Google Scholar
  18. 18.
    Syahir A, Usui K, K-y T, Kajikawa K, Mihara H (2015) Label and label-free detection techniques for protein microarrays. Microarrays 4(2):228–244PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Xu M (2016) A Bifunctional Nanocomposites based electrochemical biosensor for in-field detection of pathogenic Bacteria in food. (dissertation),;. Accessed 22 Oct 2018
  20. 20.
    Gill AA, Singh S, Thapliyal N, Karpoormath R (2019) Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Microchim Acta 186(2):114CrossRefGoogle Scholar
  21. 21.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102PubMedCrossRefGoogle Scholar
  22. 22.
    Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41PubMedCrossRefGoogle Scholar
  23. 23.
    Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732PubMedCrossRefGoogle Scholar
  24. 24.
    Bréchignac C, Houdy P, Lahmani M (2008) Nanomaterials and nanochemistry. Springer Science & Business Media,Google Scholar
  25. 25.
    Chen HM, Liu R-S, Asakura K, Jang L-Y, Lee J-F (2007) Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process. J Phys Chem C 111(50):18550–18557CrossRefGoogle Scholar
  26. 26.
    Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32(5):435–445CrossRefGoogle Scholar
  27. 27.
    Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24(36):4811–4841PubMedCrossRefGoogle Scholar
  28. 28.
    Yang D, Wang R, He M, Zhang J, Liu Z (2005) Ribbon-and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties. J Phys Chem B 109(16):7654–7658PubMedCrossRefGoogle Scholar
  29. 29.
    Huang X, Li H, Li S, Wu S, Boey F, Ma J, Zhang H (2011) Synthesis of gold square-like plates from ultrathin gold square sheets: the evolution of structure phase and shape. Angew Chem Int Ed 50(51):12245–12248CrossRefGoogle Scholar
  30. 30.
    Li C, Shuford KL, Park QH, Cai W, Li Y, Lee EJ, Cho SO (2007) High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem Int Ed 46(18):3264–3268CrossRefGoogle Scholar
  31. 31.
    Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6(4):683–688PubMedCrossRefGoogle Scholar
  32. 32.
    Teranishi T, Inoue Y, Nakaya M, Oumi Y, Sano T (2004) Nanoacorns: anisotropically phase-segregated CoPd sulfide nanoparticles. J Am Chem Soc 126(32):9914–9915PubMedCrossRefGoogle Scholar
  33. 33.
    Huang C-C, Yang Z, Chang H-T (2004) Synthesis of dumbbell-shaped au− Ag core− shell nanorods by seed-mediated growth under alkaline conditions. Langmuir 20(15):6089–6092PubMedCrossRefGoogle Scholar
  34. 34.
    Sajanlal P, Sreeprasad T, Nair AS, Pradeep T (2008) Wires, plates, flowers, needles, and Core− shells: diverse nanostructures of gold using Polyaniline templates. Langmuir 24(9):4607–4614PubMedCrossRefGoogle Scholar
  35. 35.
    Sun Y, Mayers BT, Xia Y (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2(5):481–485CrossRefGoogle Scholar
  36. 36.
    Gunawidjaja R, Peleshanko S, Ko H, Tsukruk VV (2008) Bimetallic nanocobs: decorating silver nanowires with gold nanoparticles. Adv Mater 20(8):1544–1549CrossRefGoogle Scholar
  37. 37.
    Ronkainen N, Okon S (2014) Nanomaterial-based electrochemical immunosensors for clinically significant biomarkers. Materials 7(6):4669–4709PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Giner-Casares JJ, Henriksen-Lacey M, Coronado-Puchau M, Liz-Marzán LM (2016) Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater Today 19(1):19–28CrossRefGoogle Scholar
  39. 39.
    Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano reviews 2(1):5883CrossRefGoogle Scholar
  40. 40.
    Burdușel A-C, Gherasim O, Grumezescu A, Mogoantă L, Ficai A, Andronescu E (2018) Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 8(9):681PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Chen S, Gao H, Shen W, Lu C, Yuan Q (2014) Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sensors Actuators B Chem 190:673–678CrossRefGoogle Scholar
  42. 42.
    Shahrokhian S, Hosseini Nassab N (2013) Nanodiamond decorated with silver nanoparticles as a sensitive film modifier in a jeweled electrochemical sensor: application to voltammetric determination of thioridazine. Electroanalysis 25(2):417–425CrossRefGoogle Scholar
  43. 43.
    Guo H, Xing B, Hamlet LC, Chica A, He L (2016) Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples. Sci Total Environ 554:246–252PubMedCrossRefGoogle Scholar
  44. 44.
    Ghosh D, Chattopadhyay N (2015) Gold and silver nanoparticles based superquenching of fluorescence: a review. J Lumin 160:223–232CrossRefGoogle Scholar
  45. 45.
    Shrivas K, Sahu S, Patra GK, Jaiswal NK, Shankar R (2016) Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Anal Methods 8(9):2088–2096CrossRefGoogle Scholar
  46. 46.
    Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68:149–155CrossRefGoogle Scholar
  47. 47.
    Z-m X, Q-b Z, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275CrossRefGoogle Scholar
  48. 48.
    Yang Z, Wang Y, Zhang D (2017) A novel multifunctional electrochemical platform for simultaneous detection, elimination, and inactivation of pathogenic bacteria based on the Vancomycin-functionalised AgNPs/3D-ZnO nanorod arrays. Biosens Bioelectron 98:248–253PubMedCrossRefGoogle Scholar
  49. 49.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Khalilzadeh B, Charoudeh HN, Shadjou N, Mohammad-Rezaei R, Omidi Y, Velaei K, Aliyari Z, Rashidi M-R (2016) Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: its application during stem cell differentiation. Sensors Actuators B Chem 231:561–575CrossRefGoogle Scholar
  51. 51.
    Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14(7):4757–4780PubMedCrossRefGoogle Scholar
  52. 52.
    Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7(9):243PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Plouffe BD, Murthy SK, Lewis LH (2014) Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Prog Phys 78(1):016601PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tu SI, Uknalis J, Irwin P, Yu LS (2000) The use of streptavidin coated magnetic beads for detecting pathogenic bacteria by light addressable potentiometric sensor (LAPS). Journal of Rapid Methods & Automation in Microbiology 8(2):95–109CrossRefGoogle Scholar
  55. 55.
    Kim MJ, Park JM, Noh JY, Yun TG, Kang MJ, Pyun JC (2019) Gold-nanoparticle-coated magnetic beads for concentration and ionization of Analytes for laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 33:527–538PubMedCrossRefGoogle Scholar
  56. 56.
    Xiao R, Wang C, Zhu A, Long F (2016) Single functional magnetic-bead as universal biosensing platform for trace analyte detection using SERS-nanobioprobe. Biosens Bioelectron 79:661–668PubMedCrossRefGoogle Scholar
  57. 57.
    Tang L, Casas J, Venkataramasubramani M (2013) Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Anal Chem 85(3):1431–1439PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang L, Sun Y, Wang J, Wang J, Yu A, Zhang H, Song D (2011) Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloids Surf B: Biointerfaces 84(2):484–490PubMedCrossRefGoogle Scholar
  59. 59.
    Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304PubMedCrossRefGoogle Scholar
  60. 60.
    Li J, Wu C, Hou P, Zhang M, Xu K (2018) One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens Bioelectron 102:1–8PubMedCrossRefGoogle Scholar
  61. 61.
    Yang Z, Zhang C, Zhang J, Huang L (2013) Development of magnetic single-enzyme nanoparticles as electrochemical sensor for glucose determination. Electrochim Acta 111:25–30CrossRefGoogle Scholar
  62. 62.
    Wang J, Zhu Z, Munir A, Zhou HS (2011) Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay. Talanta 84(3):783–788PubMedCrossRefGoogle Scholar
  63. 63.
    Wang R, Lum J, Callaway Z, Lin J, Bottje W, Li Y (2015) A label-free impedance immunosensor using screen-printed interdigitated electrodes and magnetic nanobeads for the detection of E. coli O157: H7. Biosensors 5(4):791–803PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wang Z, Yu J, Gui R, Jin H, Xia Y (2016) Carbon nanomaterials-based electrochemical aptasensors. Biosens Bioelectron 79:136–149PubMedCrossRefGoogle Scholar
  65. 65.
    Eissa S, Alshehri N, Rahman AMA, Dasouki M, Abu-Salah KM, Zourob M (2018) Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes. Biosens Bioelectron 101:282–289PubMedCrossRefGoogle Scholar
  66. 66.
    Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review Analytica chimica acta 908:8–21PubMedCrossRefGoogle Scholar
  67. 67.
    Hirsch A, Vostrowsky O (2007) Functionalization of carbon nanotubes, functional organic materials, edited by T. Müller and U. Bunz, Wiley InterScience, Weinheim, GermanyGoogle Scholar
  68. 68.
    Zhou Y, Ramasamy RP (2015) Phage-based electrochemical biosensors for detection of pathogenic bacteria. ECS Trans 69(38):1–8CrossRefGoogle Scholar
  69. 69.
    Chen G-Z, Yin Z-Z, Lou J-F (2014) Electrochemical immunoassay of Escherichia coli O157: H7 using Ag@ SiO2 nanoparticles as labels. Journal of analytical methods in chemistry 2014:247034PubMedPubMedCentralGoogle Scholar
  70. 70.
    Abu-Thabit NY, Makhlouf ASH (2015) Recent advances in nanocomposite coatings for corrosion protection applications. Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Elsevier, In, pp 515–549Google Scholar
  71. 71.
    Khan WS, Hamadneh N, Khan WA (2016) Polymer nanocomposites–synthesis techniques, classification and properties. One Central Press (OCP), Science and applications of Tailored NanostructuresGoogle Scholar
  72. 72.
    Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822PubMedCrossRefGoogle Scholar
  73. 73.
    Liang M, Luo B, Zhi L (2009) Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 33(13):1161–1170CrossRefGoogle Scholar
  74. 74.
    Lu J, Yang J-x, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375PubMedCrossRefGoogle Scholar
  75. 75.
    Maiti UN, Lim J, Lee KE, Lee WJ, Kim SO (2014) Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv Mater 26(4):615–619PubMedCrossRefGoogle Scholar
  76. 76.
    Yu X, Zhang W, Zhang P, Su Z (2017) Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges. Biosens Bioelectron 89:72–84PubMedCrossRefGoogle Scholar
  77. 77.
    Güner A, Çevik E, Şenel M, Alpsoy L (2017) An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem 229:358–365PubMedCrossRefGoogle Scholar
  78. 78.
    Pan HZ, Yu HW, Wang N, Zhang Z, Wan GC, Liu H, Guan X, Chang D (2015) Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase. J Biotechnol 214:133–138. CrossRefPubMedGoogle Scholar
  79. 79.
    Qi X, Gao H, Zhang Y, Wang X, Chen Y, Sun W (2012) Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of staphylococcus aureus nuc gene sequence. Bioelectrochemistry 88:42–47PubMedCrossRefGoogle Scholar
  80. 80.
    Yakoh A, Pinyorospathum C, Siangproh W, Chailapakul O (2015) Biomedical probes based on inorganic nanoparticles for electrochemical and optical spectroscopy applications. Sensors (Basel, Switzerland) 15(9):21427–21477. CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Joung C-K, Kim H-N, Lim M-C, Jeon T-J, Kim H-Y, Kim Y-R (2013) A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens Bioelectron 44:210–215PubMedCrossRefGoogle Scholar
  82. 82.
    Hassan A-RHA-A, de la Escosura-Muñiz A, Merkoçi A (2015) Highly sensitive and rapid determination of Escherichia coli O157: H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens Bioelectron 67:511–515PubMedCrossRefGoogle Scholar
  83. 83.
    Li D, Feng Y, Zhou L, Ye Z, Wang J, Ying Y, Ruan C, Wang R, Li Y (2011) Label-free capacitive immunosensor based on quartz crystal au electrode for rapid and sensitive detection of Escherichia coli O157: H7. Anal Chim Acta 687(1):89–96PubMedCrossRefGoogle Scholar
  84. 84.
    Lin Y-H, Chen S-H, Chuang Y-C, Lu Y-C, Shen TY, Chang CA, Lin C-S (2008) Disposable amperometric immunosensing strips fabricated by au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157: H7. Biosens Bioelectron 23(12):1832–1837PubMedCrossRefGoogle Scholar
  85. 85.
    Wang Y, Ping J, Ye Z, Wu J, Ying Y (2013) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157: H7. Biosens Bioelectron 49:492–498PubMedCrossRefGoogle Scholar
  86. 86.
    Yang G-J, Huang J-L, Meng W-J, Shen M, Jiao X-A (2009) A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal Chim Acta 647(2):159–166PubMedCrossRefGoogle Scholar
  87. 87.
    Zhu D, Yan Y, Lei P, Shen B, Cheng W, Ju H, Ding S (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Anal Chim Acta 846:44–50PubMedCrossRefGoogle Scholar
  88. 88.
    Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M (2011) Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417(1):73–79PubMedCrossRefGoogle Scholar
  89. 89.
    Wang R, Xu Y, Sors T, Irudayaraj J, Ren W, Wang R (2018) Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement. Microchim Acta 185(3):184CrossRefGoogle Scholar
  90. 90.
    Nguyen DQ, Ishiki K, Shiigi H (2018) Single cell immunodetection of Escherichia coli O157: H7 on an indium-tin-oxide electrode by using an electrochemical label with an organic-inorganic nanostructure. Microchim Acta 185(10):465CrossRefGoogle Scholar
  91. 91.
    Shoaie N, Forouzandeh M, Omidfar K (2018) Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Microchim Acta 185(4):217CrossRefGoogle Scholar
  92. 92.
    Afonso AS, Pérez-López B, Faria RC, Mattoso LH, Hernández-Herrero M, Roig-Sagués AX, Maltez-da Costa M, Merkoçi A (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40(1):121–126PubMedCrossRefGoogle Scholar
  93. 93.
    Varshney M, Li Y (2007) Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157: H7 in food samples. Biosens Bioelectron 22(11):2408–2414PubMedCrossRefGoogle Scholar
  94. 94.
    Liebana S, Lermo A, Campoy S, Cortes MP, Alegret S, Pividori MI (2009) Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosens Bioelectron 25(2):510–513. CrossRefPubMedGoogle Scholar
  95. 95.
    Viswanathan S, Rani C, Ho J-aA (2012) Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 94:315–319PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang X, Feng Y, Yao Q, He F (2017) Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/au-IDE MSPQC H37Rv sensor. Biosens Bioelectron 98:261–266PubMedCrossRefGoogle Scholar
  97. 97.
    Tang D, Tang J, Su B, Chen G (2010) Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. J Agric Food Chem 58(20):10824–10830PubMedCrossRefGoogle Scholar
  98. 98.
    Chan KY, Ye WW, Zhang Y, Xiao LD, Leung PH, Li Y, Yang M (2013) Ultrasensitive detection of E. coli O157: H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosens Bioelectron 41:532–537PubMedCrossRefGoogle Scholar
  99. 99.
    Li K, Lai Y, Zhang W, Jin L (2011) Fe2O3@ au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84(3):607–613PubMedCrossRefGoogle Scholar
  100. 100.
    Deng L, Guo S, Zhou M, Liu L, Liu C, Dong S (2010) A silk derived carbon fiber mat modified with au@ Pt urchilike nanoparticles: a new platform as electrochemical microbial biosensor. Biosens Bioelectron 25(10):2189–2193PubMedCrossRefGoogle Scholar
  101. 101.
    Xiang C, Li R, Adhikari B, She Z, Li Y, Kraatz H-B (2015) Sensitive electrochemical detection of Salmonella with chitosan–gold nanoparticles composite film. Talanta 140:122–127PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang X, Lu W, Han E, Wang S, Shen J (2014) Hybrid nanostructure-based immunosensing for electrochemical assay of Escherichia coli as indicator bacteria relevant to the recycling of urban sludge. Electrochim Acta 141:384–390CrossRefGoogle Scholar
  103. 103.
    Dong J, Zhao H, Xu M, Ma Q, Ai S (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141(3):1980–1986PubMedCrossRefGoogle Scholar
  104. 104.
    Abdalhai MH, An MF, Bashari M, Ji J, He Q, Sun X (2014) Rapid and sensitive detection of foodborne pathogenic bacteria (staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef. J Agric Food Chem 62(52):12659–12667PubMedCrossRefGoogle Scholar
  105. 105.
    Freitas M, Viswanathan S, Nouws H, Oliveira M, Delerue-Matos C (2014) Iron oxide/gold core/shell nanomagnetic probes and CdS biolabels for amplified electrochemical immunosensing of Salmonella typhimurium. Biosens Bioelectron 51:195–200PubMedCrossRefGoogle Scholar
  106. 106.
    CHENG YX, LIU YJ, HUANG JJ, Feng Z, XIAN YZ, Wu ZR, Zhang W, Jin LT (2008) Platinum nanoparticles modified electrode for rapid electrochemical detection of Escherichia coli. Chin J Chem 26(2):302–306CrossRefGoogle Scholar
  107. 107.
    Liu C, Jiang D, Xiang G, Liu L, Liu F, Pu X (2014) An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst 139(21):5460–5465. CrossRefPubMedGoogle Scholar
  108. 108.
    Sun W, Qi X, Zhang Y, Yang H, Gao H, Chen Y, Sun Z (2012) Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim Acta 85:145–151CrossRefGoogle Scholar
  109. 109.
    Ye W, Guo J, Bao X, Chen T, Weng W, Chen S, Yang M (2017) Rapid and sensitive detection of bacteria response to antibiotics using nanoporous membrane and graphene quantum dot (GQDs)-based electrochemical biosensors. Materials 10(6):603PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Wu Y, Chai H (2017) Development of an electrochemical biosensor for rapid detection of foodborne pathogenic Bacteria. Int J Electrochem Sci 12(5):4291–4300CrossRefGoogle Scholar
  111. 111.
    Pandey CM, Tiwari I, Singh VN, Sood K, Sumana G, Malhotra BD (2017) Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. Sensors Actuators B Chem 238:1060–1069CrossRefGoogle Scholar
  112. 112.
    Niu X, Chen W, Wang X, Men Y, Wang Q, Sun W, Li G (2018) A graphene modified carbon ionic liquid electrode for voltammetric analysis of the sequence of the Staphylococcus aureus nuc gene. Microchim Acta 185(3):167CrossRefGoogle Scholar
  113. 113.
    Li L, Yuan Y, Chen Y, Zhang P, Bai Y, Bai L (2018) Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Microchim Acta 185(8):379CrossRefGoogle Scholar
  114. 114.
    Li N, Huang X, Sun D, Yu W, Tan W, Luo Z, Chen Z (2018) Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr (IV)/terephthalate metal-organic framework. Microchim Acta 185(12):543CrossRefGoogle Scholar
  115. 115.
    Zhu F, Zhao G, Dou W (2018) Electrochemical sandwich immunoassay for Escherichia coli O157: H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active au@ Pt core/shell nanoparticles. Microchim Acta 185(10):455CrossRefGoogle Scholar
  116. 116.
    Gou D, Xie G, Li Y, Zhang X, Chen H (2018) Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe 3 O 4 and Pt nanoparticles. Microchim Acta 185(9):436CrossRefGoogle Scholar
  117. 117.
    Tian F, Lyu J, Shi J, Tan F, Yang M (2016) A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sensors Actuators B Chem 225:312–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stem Cell Research Center (SCRC)Tabriz University of Medical SciencesTabrizIran
  2. 2.Student’s Research CommitteeTabriz University of Medical SciencesTabrizIran
  3. 3.Department of ImmunologyTabriz University of Medical SciencesTabrizIran
  4. 4.Department of Nano-chemistry, Nanotechnology Research CenterUrmia UniversityUrmiaIran
  5. 5.Department of Basic Medical SciencesKhoy University of Medical SciencesKhoyIran
  6. 6.Department of Bioengineering, Faculty of Chemistry-MetallurgyYildiz Technical UniversityIstanbulTurkey
  7. 7.Research Center for Pharmaceutical Nanotechnology (RCPN)Tabriz University of Medical SciencesTabrizIran
  8. 8.Biosensors and Bioelectronics Research CenterArdabil University of Medical SciencesArdabilIran

Personalised recommendations