Microchimica Acta

, 186:760 | Cite as

Target-induced in-situ formation of fluorescent DNA-templated copper nanoparticles by a catalytic hairpin assembly: application to the determination of DNA and thrombin

  • Tai Ye
  • Yan Peng
  • Min Yuan
  • Hui Cao
  • Jingsong Yu
  • Yan Li
  • Fei XuEmail author
Original Paper


A fluorometric method is described for nucleic acid signal amplification through target-induced catalytic hairpin assembly with DNA-templated copper nanoparticles (Cu NPs). The toehold-mediated self-assembly of three metastable hairpins is triggered in presence of target DNA. This leads to the formation of a three-way junction structure with protruding mononucleotides at the 3′ terminus. The target DNA is released from the formed branched structure and triggers another assembly cycle. As a result, plenty of branched DNA becomes available for the synthesis of Cu NPs which have fluorescence excitation/emission maxima at 340/590 nm. At the same time, the branched structure protects the Cu NPs from digestion by exonuclease III. The unreacted hairpins are digested by exonuclease III, and this warrants a lower background signal. The method can detect ssDNA (24 nt) at low concentration (44 pM) and is selective over single-nucleotide polymorphism. On addition of an aptamer, the strategy can also be applied to the quantitation of thrombin at levels as low as 0.9 nM.

Graphical abstract

Schematic representation of target-induced catalytic hairpin assembly to form branched DNA template for the in situ synthesis of fluorescent Cu nanoparticles.


Three-way junction Exonuclease III Signal amplify Toehold Aptamer Strand displacement 



This work was financially supported by National Natural Science Foundation of China (31801636), National Key Research and Development Program of China (2017YFC1600603),, and Shanghai Sailing Program (Grant No. 18YF1417300).

Supplementary material

604_2019_3927_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1035 kb)


  1. 1.
    Li J, Green AA, Yan H, Fan C (2017) Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem 9(11):1056–1067. CrossRefPubMedGoogle Scholar
  2. 2.
    Chen YJ, Groves B, Muscat RA, Seelig G (2015) DNA nanotechnology from the test tube to the cell. Nat Nanotechnol 10(9):748–760. CrossRefGoogle Scholar
  3. 3.
    Yang D, Tang Y, Miao P (2017) Hybridization chain reaction directed DNA superstructures assembly for biosensing applications. TrAC Trends Anal Chem 94:1–13. CrossRefGoogle Scholar
  4. 4.
    Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46(14):4281–4298. CrossRefPubMedGoogle Scholar
  5. 5.
    Yang F, Zuo X, Fan C, Zhang X-E (2018) Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. Natl Sci Rev 5(5):740–755. CrossRefGoogle Scholar
  6. 6.
    Chen Z, Liu C, Cao F, Ren J, Qu X (2018) DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 47(11):4017–4072. CrossRefPubMedGoogle Scholar
  7. 7.
    Chen Y, Phipps ML, Werner JH, Chakraborty S, Martinez JS (2018) DNA Templated metal Nanoclusters: from emergent properties to unique applications. Acc Chem Res 51(11):2756–2763. CrossRefPubMedGoogle Scholar
  8. 8.
    New SY, Lee ST, Su XD (2016) DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale 8(41):17729–17746. CrossRefPubMedGoogle Scholar
  9. 9.
    Lee JB, Roh YH, Um SH, Funabashi H, Cheng W, Cha JJ, Kiatwuthinon P, Muller DA, Luo D (2009) Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat Nanotechnol 4(7):430–436. CrossRefPubMedGoogle Scholar
  10. 10.
    Meng HM, Zhang X, Lv Y, Zhao Z, Wang NN, Fu T, Fan H, Liang H, Qiu L, Zhu G, Tan W (2014) DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano 8(6):6171–6181. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schultz D, Gardner K, Oemrawsingh SS, Markesevic N, Olsson K, Debord M, Bouwmeester D, Gwinn E (2013) Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv Mater 25(20):2797–2803. CrossRefPubMedGoogle Scholar
  12. 12.
    Park J, Song J, Park J, Park N, Kim S (2014) Branched DNA-based synthesis of fluorescent silver Nanocluster. Bull Kor Chem Soc 35(4):1105–1109. CrossRefGoogle Scholar
  13. 13.
    Guo W, Orbach R, Mironi-Harpaz I, Seliktar D, Willner I (2013) Fluorescent DNA hydrogels composed of nucleic acid-stabilized silver nanoclusters. Small 9(22):3748–3752. CrossRefPubMedGoogle Scholar
  14. 14.
    Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D (2018) Synthesis of branched DNA Scaffolded Super-Nanoclusters with enhanced antibacterial performance. Small 14(16):e1800185. CrossRefPubMedGoogle Scholar
  15. 15.
    Qing Z, He X, Huang J, Wang K, Zou Z, Qing T, Mao Z, Shi H, He D (2014) Target-catalyzed dynamic assembly-based pyrene excimer switching for enzyme-free nucleic acid amplified detection. Anal Chem 86(10):4934–4939. CrossRefPubMedGoogle Scholar
  16. 16.
    Wang H, Li C, Liu X, Zhou X, Wang F (2018) Construction of an enzyme-free concatenated DNA circuit for signal amplification and intracellular imaging. Chem Sci 9(26):5842–5849. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen L, Sha L, Qiu Y, Wang G, Jiang H, Zhang X (2015) An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters. Nanoscale 7(7):3300–3308. CrossRefPubMedGoogle Scholar
  18. 18.
    Yang C, Shi K, Dou B, Xiang Y, Chai Y, Yuan R (2015) In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive and label-free electrochemical detection of microRNA. ACS Appl Mater Interfaces 7(2):1188–1193. CrossRefPubMedGoogle Scholar
  19. 19.
    Orbach R, Guo W, Wang F, Lioubashevski O, Willner I (2013) Self-assembly of luminescent Ag nanocluster-functionalized nanowires. Langmuir 29(42):13066–13071. CrossRefPubMedGoogle Scholar
  20. 20.
    Liu R, Wang C, Hu J, Su Y, Lv Y (2018) DNA-templated copper nanoparticles: versatile platform for label-free bioassays. TrAC Trends Anal Chem 105:436–452. CrossRefGoogle Scholar
  21. 21.
    Han Y, Zhang F, Gong H, Cai C (2018) Double G-quadruplexes in a copper nanoparticle based fluorescent probe for determination of HIV genes. Microchim Acta 186(1):30. CrossRefGoogle Scholar
  22. 22.
    Kim S, Kim JH, Kwon WY, Hwang SH, Cha BS, Kim JM, Oh SS, Park KS (2019) Synthesis of DNA-templated copper nanoparticles with enhanced fluorescence stability for cellular imaging. Microchim Acta 186(7):479–475. CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Chen Z, Tao Y, Wang Z, Ren J, Qu X (2015) Hybridization chain reaction engineered dsDNA for cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs. Chem Commun (Camb) 51(57):11496–11499. CrossRefGoogle Scholar
  24. 24.
    Song C, Yang X, Wang K, Wang Q, Huang J, Liu J, Liu W, Liu P (2014) Label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper nanoparticles. Anal Chim Acta 827 (0):74–79. doi: CrossRefGoogle Scholar
  25. 25.
    Chen J, Zhou S (2016) Label-free DNA Y junction for bisphenol a monitoring using exonuclease III-based signal protection strategy. Biosens Bioelectron 77:277–283. CrossRefPubMedGoogle Scholar
  26. 26.
    Cao Q, Li J, Wang E (2019) Recent advances in the synthesis and application of copper nanomaterials based on various DNA scaffolds. Biosens Bioelectron 132:333–342. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang Z, Y-e S, Yang X, Xiong Y, Li Y, Chen B, Lai W-F, Rogach AL (2018) Water-soluble biocompatible copolymer Hypromellose grafted chitosan able to load exogenous agents and copper Nanoclusters with aggregation-induced emission. Adv Funct Mater 28(34):1802848. CrossRefGoogle Scholar
  28. 28.
    Wang B, Thachuk C, Ellington AD, Winfree E, Soloveichik D (2018) Effective design principles for leakless strand displacement systems. Proc Natl Acad Sci U S A 115(52):E12182–E12191. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3(2):103–113CrossRefGoogle Scholar
  30. 30.
    Xu N, Wang Q, Lei J, Liu L, Ju H (2015) Label-free triple-helix aptamer as sensing platform for “signal-on” fluorescent detection of thrombin. Talanta 132:387–391. CrossRefPubMedGoogle Scholar
  31. 31.
    Li L, Liang Y, Zhao Y, Chen Z (2018) Target binding and DNA hybridization-induced gold nanoparticle aggregation for colorimetric detection of thrombin. Sensors Actuators B Chem 262:733–738. CrossRefGoogle Scholar
  32. 32.
    Chung S, Moon J-M, Choi J, Hwang H, Shim Y-B (2018) Magnetic force assisted electrochemical sensor for the detection of thrombin with aptamer-antibody sandwich formation. Biosens Bioelectron 117:480–486. CrossRefPubMedGoogle Scholar
  33. 33.
    Sui N, Wang L, Xie F, Liu F, Xiao H, Liu M, Yu WW (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta 183(5):1563–1570. CrossRefGoogle Scholar
  34. 34.
    Khonsari YN, Sun S (2018) Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Microchim Acta 185(9):430–410. CrossRefGoogle Scholar
  35. 35.
    Wang L, Yang W, Li T, Li D, Cui Z, Wang Y, Ji S, Song Q, Shu C, Ding L (2017) Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184(9):3145–3151. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations