Advertisement

Microchimica Acta

, 187:1 | Cite as

An impedimetric biosensor based on electrophoretically assembled ZnO nanorods and carboxylated graphene nanoflakes on an indium tin oxide electrode for detection of the DNA of Escherichia coli O157:H7

  • Nandita Jaiswal
  • Chandra Mouli Pandey
  • Shipra Solanki
  • Ida TiwariEmail author
  • Bansi Dhar Malhotra
Original Paper
  • 34 Downloads

Abstract

Aminopropyltrimethoxysilane (APTMS)-functionalized zinc oxide (ZnO) nanorods and carboxylated graphene nanoflakes (c-GNF) were used in a composite that was electrophoretically deposited on an indium tin oxide (ITO) coated glass substrate. The modified ITO electrodes were characterized using various microscopic and spectroscopic techniques which confirm the deposition of the APTMS-ZnO/c-GNF composite. The electrodes have been used for the covalent immobilization of an Escherichia coli O157:H7 (E. coli)-specific DNA prob. Impedimetric studies revealed that the gene sensor displays linear response in a wide range of target DNA concentration (10−16 M to 10−6 M) with a detection limit of 0.1 fM. The studies on the cross-reactivity to other water-borne pathogens show that the bioelectrode is highly specific.

Graphical abstract

Schematic illustration for fabrication of nucleic acid biosensor for E. coli DNA detection using an ITO electrode modified with siloxane-functionalized zinc oxide (ZnO) nanorods and carboxylated graphene nanoflakes (c-GNFs).

Keywords

Biosensor Escherichia coli Zinc oxide Graphene nanoflakes Electrophoretic deposition 

Notes

Acknowledgements

N.J. and S.S. are thankful to CSIR, India for the award of SRF and RA, respectively. C.M.P. acknowledges the Department of Science and Technology, New Delhi, India for DST-INSPIRE Faculty Award (DST/INSPIRE/04/2015/000932). We thank Dr. Gajjala Sumana (CSIR-National Physical Laboratory) for interesting discussions. N.J. and I.T. are sincerely thankful to Prof. O.N Srivastava (Dept. of Physics, I.Sc. B.H.U) and Prof. Rajiv Prakash (IIT B.H.U) for providing TEM and SEM facilities respectively. B.D.M. thanks Science & Engineering Research Board (Govt. of India) for the award of a Distinguished Fellowship (SB/S9/YSCP/SERB-DF/2018).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

604_2019_3921_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1346 kb)

References

  1. 1.
    Pandey CM, Dewan S, Chawla S, Yadav BK, Sumana G, Malhotra BD (2016) Controlled deposition of functionalized silica-coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection. Anal Chim Acta 937:29–38CrossRefGoogle Scholar
  2. 2.
    Zhang P, Wang S (2014) Designing fractal nanostructured biointerfaces for biomedical applications. Chem phys chem 15:1550–1561CrossRefGoogle Scholar
  3. 3.
    Xu Q, Wang L, Lei J, Deng S, Ju H (2013) Platinum nanodendrite functionalized graphene nanosheets as a non-enzymatic label for electrochemical immunosensing. J Mater Chem B 1:5347–5352CrossRefGoogle Scholar
  4. 4.
    Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426CrossRefGoogle Scholar
  5. 5.
    Pan C, Zhu J (2009) The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires. J Mater Chem 19:869–884CrossRefGoogle Scholar
  6. 6.
    Rahman MM, Ahammad AJS, Jin JH, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886CrossRefGoogle Scholar
  7. 7.
    Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) nanostructured metal oxide-based biosensors. NPG Asia Mater 3:17–24 (2011)CrossRefGoogle Scholar
  8. 8.
    Chai G, Lupan O, Chow L, Heinrich H (2009) Crossed zinc oxide nanorods for ultraviolet radiation detection. Sens Actuators A: Physical 150:184–187CrossRefGoogle Scholar
  9. 9.
    Mehrabian M, Azimirad R, Mirabbaszadeh K, Afarideh H, Davoudian M (2011) UV detecting properties of hydrothermally synthesized ZnO nanorods. Physica E Low dimens Syst Nanostruct 43:1141–1145CrossRefGoogle Scholar
  10. 10.
    Ali SMU, Nur O, Willander M, Danielsson B (2010) A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire. Sensors Actuators B Chem 145:869–874CrossRefGoogle Scholar
  11. 11.
    Fulati A, Ali SMU, Asif MH, Alvi NH, Willander M, Brännmark C, Stralfors P, Börjesson SI, Elinder F, Danielssond B (2010) An intracellular glucose biosensor based on nanoflake ZnO. Sensors Actuators B Chem 150:673–680CrossRefGoogle Scholar
  12. 12.
    Mohammed AM, Ibraheem IJ, Obaid AS, Bououdina M (2017) Nanostructured ZnO-based biosensor: DNA immobilization and hybridization. Sens Biosensing Res 15:46–52CrossRefGoogle Scholar
  13. 13.
    Ahmad R, Tripathy N, Jang NK, Khang G, Hahn YB (2015) Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B Chem 206:146–151CrossRefGoogle Scholar
  14. 14.
    Tak M, Gupta V, Tomar M (2014) Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Biosens Bioelectron 59:200–207CrossRefGoogle Scholar
  15. 15.
    Chen X, Yan H, Shi Z, Feng Y, Li J, Lin Q, Wang X, Sun W (2017) A novel biosensor based on electro-co-deposition of sodium alginate-Fe3O4-graphene composite on the carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis of myoglobin. Polym Bull 74:75–90CrossRefGoogle Scholar
  16. 16.
    Salih E, Mekawy M, Hassan RYA, El-Sherbiny IM (2016) Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J Nanostructure Chem 6:137–144CrossRefGoogle Scholar
  17. 17.
    Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803CrossRefGoogle Scholar
  18. 18.
    Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27:990–993CrossRefGoogle Scholar
  19. 19.
    Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557CrossRefGoogle Scholar
  20. 20.
    Loo AH, Bonanni A, Pumera M (2013) Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels. Nanoscale 5:4758–4762CrossRefGoogle Scholar
  21. 21.
    Chang H, Wang Y, Li J (2011) Electrochemical DNA sensors: from nanoconstruction to biosensing. Curr Org Chem 15:506–517CrossRefGoogle Scholar
  22. 22.
    Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438CrossRefGoogle Scholar
  23. 23.
    Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17:7–15CrossRefGoogle Scholar
  24. 24.
    Tiwari I, Singh M, Pandey CM, Sumana G (2015) Electrochemical detection of a pathogenic Escherichia coli specific DNA sequence based on a graphene oxide–chitosan composite decorated with nickel ferrite nanoparticles. RSC Adv 5:67115–67124CrossRefGoogle Scholar
  25. 25.
    Jaiswal N, Pandey CM, Soni A, Tiwari I, Rosillo-Lopez M, Salzmann CG, Malhotra BD, Sumana G (2018) Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. Sensors Actuators B Chem 275:312–321CrossRefGoogle Scholar
  26. 26.
    Xu M, Wang R, Li Y (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 162:511–522CrossRefGoogle Scholar
  27. 27.
    Wang J, Li S, Zhang Y (2010) A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode. Electrochim Acta 55:4436–4440CrossRefGoogle Scholar
  28. 28.
    Solanki PR, Kaushik A, Chavhan PM, Maheshwari SN, Malhotra BD (2009) Nanostructured zirconium oxide based genosensor for Escherichia coli detection. Electrochem Commun 11:2272–2277CrossRefGoogle Scholar
  29. 29.
    Yang Y, Wang Z, Yang M, Li J, Zheng F, Shen G, Yu R (2007) Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal Chim Acta 584:268–274CrossRefGoogle Scholar
  30. 30.
    Rosillo-Lopez M, Lee TJ, Bella M, Harta M, Salzmann CG (2015) Formation and chemistry of carboxylic anhydrides at the graphene edge. RSC Adv 5:104198–104202CrossRefGoogle Scholar
  31. 31.
    Wu C, Qiao X, Chen J, Wang H, Tan F, Li S (2008) A novel chemical route to prepare ZnO nanoparticles. Mater Lett 60:1828–1832CrossRefGoogle Scholar
  32. 32.
    Zhu J, He J (2012) Facile synthesis of Graphene-wrapped honeycomb MnO2 Nanospheres and their application in Supercapacitors. Appl Mater Interfaces 4:1770–1776CrossRefGoogle Scholar
  33. 33.
    Ivers-Tiffée E, Weber A, Schichlein H (2010) Electrochemical impedance spectroscopy. Handbook of Fuel Cells, John Wiley Sons Ltd ChichesterGoogle Scholar
  34. 34.
    Khan SB, Faisal M, Rahman MM, Jamal A (2011) Low-temperature growth of ZnO nanoparticles: Photocatalyst and acetone sensor. Talanta 85:943–949CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Nandita Jaiswal
    • 1
  • Chandra Mouli Pandey
    • 2
  • Shipra Solanki
    • 3
  • Ida Tiwari
    • 1
    Email author
  • Bansi Dhar Malhotra
    • 3
  1. 1.Department of Chemistry(Centre of Advanced Study), Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Applied ChemistryDelhi Technological UniversityDelhiIndia
  3. 3.Department of BiotechnologyDelhi Technological UniversityDelhiIndia

Personalised recommendations