Advertisement

Microchimica Acta

, 186:799 | Cite as

Fibrinogen-templated gold nanoclusters for fluorometric determination of cysteine and mercury(II)

  • Zhiguang Suo
  • Xialing Hou
  • Ziheng Hu
  • Yihao Liu
  • Feifei Xing
  • Lingyan FengEmail author
Original Paper
  • 87 Downloads

Abstract

Gold nanoclusters (Au NCs) using fibrinogen (FBG) protein as template are fabricated via one-pot reduction strategy, and applied for fluorometric detections of cysteine (Cys) and mercury(II). The modified FBG-Au NCs exhibit red fluorescence, with excitation/emission maxima at 360/620 nm, a 7% quantum yield, and a 2.2 μs decay time. The fluorescence of the nanoprobe is quenched by Cys and Hg(II). Cys can be determined by fluorometry in the 0.01 to 150 μmol L−1 concentration range and with a detection limit of 0.79 μmol L−1. Due to the oxidation of Hg(II), it can be detected in the 0.01 to 10 μmol L−1 concentration range. The properties of the FBG-Au NCs and the analytical performance are comparable with previously reported peptide/protein-templated Au NCs, supplying a promising candidate for Au NCs nanoprobes synthesis and applications.

Graphical abstract

Schematic representation of the preparation of gold nanoclusters (Au NCs) using fibrinogen (FBG) as the template. The modified Au NCs were applied to the fluorometric detection of cysteine (Cys) and mercury ion (Hg(II)).

Keywords

Fluorescent nanoprobes Au NCs Static quenching Ultra-stability Quantum yield 

Notes

Acknowledgements

The authors gratefully acknowledge Shanghai Sailing Program (17YF1405700), the National Natural Science Foundation of China (Grant No. 21705106), as well as the support of the Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institution of Higher Learning (No. TP2016023) and Shanghai Natural Science Foundation (No. 18ZR1415400).

Supplementary material

604_2019_3919_MOESM1_ESM.pdf (181 kb)
ESM 1 (PDF 180 kb)

References

  1. 1.
    Xie JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold Nanoclusters. J Am Chem Soc 131(3):888.  https://doi.org/10.1021/ja806804u CrossRefPubMedGoogle Scholar
  2. 2.
    Wu ZK, Jin RC (2010) On the Ligand's role in the fluorescence of gold Nanoclusters. Nano Lett 10(7):2568–2573.  https://doi.org/10.1021/nl101225f CrossRefPubMedGoogle Scholar
  3. 3.
    Wei H, Wang ZD, Yang LM, Tian SL, Hou CJ, Lu Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 135(6):1406–1410.  https://doi.org/10.1039/C0AN00046A CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Xie JP, Zheng YG, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of au nanoclusters by Hg2+-au+ interactions. Chem Commun 46(4):961–963.  https://doi.org/10.1039/B920748A CrossRefGoogle Scholar
  5. 5.
    Huang X, Luo Y, Li Z, Li BY, Zhang H, Li L, Majeed I, Zou P, Tan BE (2011) Biolabeling hematopoietic system cells using near-infrared fluorescent gold Nanoclusters. J Phys Chem C 115(34):16753–16763.  https://doi.org/10.1021/jp202612p CrossRefGoogle Scholar
  6. 6.
    Khandelia R, Bhandari S, Pan UN, Ghosh SS, Chattopadhyay A (2015) Gold Nanocluster embedded albumin nanoparticles for two-photon imaging of Cancer cells accompanying drug delivery. Small 11(33):4075–4081.  https://doi.org/10.1002/smll.201500216 CrossRefPubMedGoogle Scholar
  7. 7.
    Tao Y, Li ZH, Ju EG, Ren JS, Qu XG (2013) Polycations-functionalized water-soluble gold nanoclusters: a potential platform for simultaneous enhanced gene delivery and cell imaging. Nanoscale 5(13):6154–6160.  https://doi.org/10.1039/C3NR01326J CrossRefPubMedGoogle Scholar
  8. 8.
    Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T (2010) Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2(12):2769–2776.  https://doi.org/10.1039/C0NR00377H CrossRefPubMedGoogle Scholar
  9. 9.
    Chaudhari K, Xavier PL, Pradeep T (2011) Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 5(11):8816–8827.  https://doi.org/10.1021/nn202901a CrossRefPubMedGoogle Scholar
  10. 10.
    Selvaprakash K, Chen YC (2014) Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules. Biosens Bioelectron 61(15):88–94.  https://doi.org/10.1016/j.bios.2014.04.055 CrossRefPubMedGoogle Scholar
  11. 11.
    Wen F, Dong YH, Feng L, Wang S, Zhang SC, Zhang XR (2011) Horseradish peroxidase functionalized fluorescent gold Nanoclusters for hydrogen peroxide sensing. Anal Chem 83(4):1193–1196.  https://doi.org/10.1021/ac1031447 CrossRefPubMedGoogle Scholar
  12. 12.
    Liu CL, Wu HT, Hsiao YH, Lai CW, Shih CW, Peng YK, Tang KC, Chang HW, Chien YC, Hsiao JK, Cheng JT, Chou PT (2011) Insulin-directed synthesis of fluorescent gold Nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew Chem Int Ed 50(31):7056–7060.  https://doi.org/10.1002/anie.201100299 CrossRefGoogle Scholar
  13. 13.
    Kong YF, Chen J, Gao F, Brydson R, Johnson B, Heath G, Zhang Y, Wu L, Zhou DJ (2013) Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale 5(3):1009–1017.  https://doi.org/10.1039/C2NR32760K CrossRefPubMedGoogle Scholar
  14. 14.
    Wang P, Zhang LM, Xie YZY, Wang NX, Tang RB, Zheng WF, Jiang XY (2017) Genome editing for Cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold Nanocluster/lipid Core-Shell Nanocarrier. Adv Sci 4(11):1700175–1700110.  https://doi.org/10.1002/advs.201700175 CrossRefGoogle Scholar
  15. 15.
    Lai Q, Liu Q, Zhao K, Duan XH, Wang GN, Su XG (2019) Fluorometric determination and intracellular imaging of cysteine by using glutathione capped gold nanoclusters and cerium(III) induced aggregation. Microchim Acta 186(6):327.  https://doi.org/10.1007/s00604-019-3438-1 CrossRefGoogle Scholar
  16. 16.
    Liu MW, Li N, He Y, Ge YL, Song GW (2018) Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine. Microchim Acta 185(2):147.  https://doi.org/10.1007/s00604-018-2674-0 CrossRefGoogle Scholar
  17. 17.
    Reed RG, Feldhoff RC, Clute OL, Peters T Jr (1975) Fragments of bovine serum albumin produced by limited proteolysis. Isolation and characterization of peptic fragments. Biochemistry 14(20):4578–4583.  https://doi.org/10.1021/bi00691a027 CrossRefPubMedGoogle Scholar
  18. 18.
    Vauthier C, Persson B, Lindner P, Cabane B (2011) Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials 32(6):1646–1656.  https://doi.org/10.1016/j.biomaterials.2010.10.026 CrossRefPubMedGoogle Scholar
  19. 19.
    Kendall M, Ding P, Kendall K (2011) Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology. Nanotoxicology 5(1):55–65.  https://doi.org/10.3109/17435390.2010.489724 CrossRefPubMedGoogle Scholar
  20. 20.
    Whetten RL, Price RC (2007) Nano-golden order. Science 318(5849):407–408.  https://doi.org/10.1126/science.1150176 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu J, Sun YQ, Huo YY, Zhang HX, Wang LF, Zhang P, Song D, Shi YW, Guo W (2014) Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc 136(2):574–577.  https://doi.org/10.1021/ja409578w CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang HT, Zhang CY, Liu RC, Yi L, Sun HY (2015) A highly selective and sensitive fluorescent thiol probe through dual-reactive and dual-quenching groups. Chem Commun 51(11):2029.  https://doi.org/10.1039/C4CC08156K CrossRefGoogle Scholar
  23. 23.
    Kowada T, Maeda H, Kikuchi K (2015) BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev 44(14):4953–4972.  https://doi.org/10.1039/C5CS00030K CrossRefPubMedGoogle Scholar
  24. 24.
    Chen X, Zhou Y, Peng XJ, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39(6):2120–2135.  https://doi.org/10.1039/B925092A CrossRefPubMedGoogle Scholar
  25. 25.
    Yigit MV, Mishra A, Tong R, Cheng JJ, Wong GCL, Lu Y (2009) Inorganic mercury detection and controlled release of chelating agents from ion-responsive liposomes. Chem Biol 16(9):937–942.  https://doi.org/10.1016/j.chembiol.2009.08.011 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu ZQ, Su YY, Li J, Li D, Zhang J, Song SP, Zhao Y, Li GX, Fan CH (2009) Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81(18):7660–7666.  https://doi.org/10.1021/ac9010809 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang YW, Tang S, Yang HH, Song HB (2016) A novel colorimetric assay for rapid detection of cysteine and Hg2+ based on gold clusters. Talanta 146:71–74.  https://doi.org/10.1016/j.talanta.2015.08.015 CrossRefPubMedGoogle Scholar
  28. 28.
    Hu DH, Sheng ZH, Gong P, Zhang PF, Cai LT (2010) Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst 135(6):1411–1416.  https://doi.org/10.1039/C000589D CrossRefGoogle Scholar
  29. 29.
    Cui ML, Liu JM, Wang XX, Lin LP, Jiao L, Zhang LH, Zheng ZY, Lin SQ (2012) Selective determination of cysteine using BSA-stabilized gold nanoclusters with red emission. Analyst 137(22):5346–5351.  https://doi.org/10.1039/C2AN36284H CrossRefPubMedGoogle Scholar
  30. 30.
    Nandi I, Chall S, Chowdhury S, Mitra T, Roy SS, Chattopadhyay K (2018) Protein fibril-Templated biomimetic synthesis of highly fluorescent gold Nanoclusters and their applications in cysteine sensing. ACS Omega 3(7):7703–7714.  https://doi.org/10.1021/acsomega.8b01033 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cui ML, Wang C, Yang DP, Song QJ (2018) Fluorescent iridium nanoclusters for selective determination of chromium(VI). Microchim Acta 185(1):8.  https://doi.org/10.1007/s00604-017-2553-0 CrossRefGoogle Scholar
  32. 32.
    Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106(13):3410–3415.  https://doi.org/10.1021/jp014259v CrossRefGoogle Scholar
  33. 33.
    Nebu J, Devi JSA, Aparna RS, Aswathy B, Lekha GM, Sony G (2019) Potassium triiodide-quenched gold nanocluster as a fluorescent turn-on probe for sensing cysteine/homocysteine in human serum. Anal Bioanal Chem 411(5):997–1007.  https://doi.org/10.1007/s00216-018-1511-y CrossRefPubMedGoogle Scholar
  34. 34.
    Kawasaki H, Yoshimura K, Hamaguchi K, Arakawa R (2011) Trypsin-stabilized fluorescent gold Nanocluster for sensitive and selective Hg2+ detection. Anal Sci 27(6):591–596.  https://doi.org/10.2116/analsci.27.591 CrossRefPubMedGoogle Scholar
  35. 35.
    Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) Ph-dependent synthesis of pepsin-mediated gold Nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21(18):3508–3515.  https://doi.org/10.1002/adfm.201100886 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Genome Institute, and Department of Chemistry, College of ScienceShanghai UniversityShanghaiChina

Personalised recommendations