Advertisement

Microchimica Acta

, 186:836 | Cite as

Phosphorene nanocomposite with high environmental stability and antifouling capability for simultaneous sensing of clenbuterol and ractopamine

  • Yu Ge
  • Mingren Qu
  • Lanjiao XuEmail author
  • Xiaoqiang Wang
  • Junping Xin
  • Xiaoning Liao
  • Meifa Li
  • Mingfang Li
  • Yangping WenEmail author
Original Paper
  • 54 Downloads

Abstract

A series of phosphorene (BP) nanocomposites was prepared to realize simultaneous electrochemical determination of clenbuterol (CLB) and ractopamine (RAC). CLB and RAC are the most commonly used β-agonists in animal-derived food. The BP nanohybrid was obtained by co-decoration with both mono(6-mercapto-6-deoxy)-β-cyclodextrin and poly(3,4-ethylenedioxythiophene) nanoparticles. It displays high stability, antifouling capability, a large electrochemical active surface and good electrochemical response. The electrochemical assisted antifouling strategy was selected by further eliminating the fouling of the electrode surface using continuous cyclic voltammetry. The electrode was employed for electrochemical sensing of CLB and RAC at typical peak voltages of 0.8 and 1.0 V (vs. SCE). Responses are linear in the 0.3–90 μM concentration range for CLB, and from 0.3 to 9.4 μM for RAC under optimal conditions. The limit of detection are 0.14 and 0.12 μM, respectively. The sensor was employed for simultaneous determination of CLB and RAC in (spiked) beef, feed and bovine serum samples with acceptable recoveries.

Graphical abstract

An electrochemically assisted anti-fouling method for simultaneous voltammetric nanosensing of clenbuterol (CLB) and ractopamine (RAC) in edible cattle product samples using high-stable and anti-foul phosphorene (BP) co-decorated with mono(6-mercapto-6-deoxy)-β-cyclodextrin (S-β-CD) and poly(3,4-ethylenedioxythiophene) (PEDOTNPs).

Keywords

Electrochemically assisted antifouling strategy Graphene analogue β-Agonists Animal-derived food Continuous cyclic voltammetry 

Notes

Acknowledgements

This study was funded by National Beef Cattle Industry Technology & System (CARS-37), National Natural Science Foundation of China (51662014, 51962007, 31660492), Outstanding Young Talent Program of Jiangxi Province (20171BCB23042), Youth project of Natural Science Foundation of JiangxiProvince (20192ACBL21015, 20192BAB204020), Development and Nutrition of Feed for Beef Cattle in Guangchang County (09005392), Jiangxi Provincial Department of Education (GJJ170260).

Compliance with ethical standards

Conflict of interest

The author(s) declarethat they have no competing interests .

Supplementary material

604_2019_3908_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1.76 mb)

References

  1. 1.
    Hu LM, Luo K, Xia J, Xu GM, Wu CH, Han JJ, Lai WH (2017) Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens Bioelectron 91:95–103.  https://doi.org/10.1016/j.bios.2016.12.030 CrossRefPubMedGoogle Scholar
  2. 2.
    Pleadin J, Vulić A, Perši N, Vahčić N (2010) Clenbuterol residues in pig muscle after repeat administration in a growth-promoting dose. Meat Sci 86:733–737.  https://doi.org/10.1016/j.meatsci.2010.06.013 CrossRefPubMedGoogle Scholar
  3. 3.
    Zhai H, Liu Z, Chen Z, Liang Z, Su Z, Wang S (2015) A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol. Sens Atuators B 210:483–490.  https://doi.org/10.1016/j.snb.2014.12.121 CrossRefGoogle Scholar
  4. 4.
    Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284.  https://doi.org/10.1016/j.bios.2015.08.037 CrossRefPubMedGoogle Scholar
  5. 5.
    Broza YY, Haick H (2013) Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine-UK 8:785–806.  https://doi.org/10.2217/nnm.13.64 CrossRefGoogle Scholar
  6. 6.
    Yan F, Zhang Y, Zhang S, Zhao J, Liu S, He L, Zhang Z (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182:855–862.  https://doi.org/10.1007/s00604-014-1399-y CrossRefGoogle Scholar
  7. 7.
    Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212.  https://doi.org/10.1016/j.bios.2015.07.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Yang Y, Zhang H, Huang C, Yang D, Jia N (2017) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-au-PEI-hemin layered nanocomposites. Biosens Bioelectron 89:461–467.  https://doi.org/10.1016/j.bios.2016.04.019 CrossRefPubMedGoogle Scholar
  9. 9.
    Yola ML, Atar N (2019) Simultaneous determination of β-agonists on hexagonal boron nitride nanosheets/multi-walled carbon nanotubes nanocomposite modified glassy carbon electrode. Mater Sci Eng C 96:669–676.  https://doi.org/10.1016/j.bios.2016.04.019 CrossRefGoogle Scholar
  10. 10.
    Ge Y, Camarada MB, Xu L, Qu M, Liang H, Zhao E, Wen Y (2018) A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol. Microchim Acta 185:566.  https://doi.org/10.1007/s00604-018-3084-z CrossRefGoogle Scholar
  11. 11.
    Lu S, Wen Y, Bai L, Liu G, Chen Y, Du H, Wang X (2015) pH-controlled voltammetric behaviors and detection of phytohormone 6-benzylaminopurine using MWCNT/GCE. J Electroanal Chem 750:89–99.  https://doi.org/10.1016/j.jelechem.2015.05.019 CrossRefGoogle Scholar
  12. 12.
    Lu S, Bai L, Wen Y, Li M, Yan D, Zhang R, Chen K (2015) Water-dispersed carboxymethyl cellulose-montmorillonite-single walled carbon nanotube composite with enhanced sensing performance for simultaneous voltammetric determination of two trace phytohormones. J Solid State Electrochem 19:2023–2037.  https://doi.org/10.1007/s10008-014-2695-5 CrossRefGoogle Scholar
  13. 13.
    Xiang Y, Camarada MB, Wen Y, Wu H, Chen J, Li M, Liao X (2018) Simple voltammetric analyses of ochratoxin a in food samples using highly-stable and antifoulinging black phosphorene nanosensor. Electrochim Acta 282:490–498.  https://doi.org/10.1016/j.electacta.2018.06.055 CrossRefGoogle Scholar
  14. 14.
    Hanlon D, Backes C, Doherty E, Cucinotta CS, Berner NC, Boland C, Zhang S (2015) Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat Commun 6:8563.  https://doi.org/10.1038/ncomms9563 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang J, Ding W, Zhang Z, Xu J, Wen Y (2016) Preparation of black phosphorus-PEDOT: PSS hybrid semiconductor composites with good film-forming properties and environmental stability in water containing oxygen. RSC Adv 6:76174–76182.  https://doi.org/10.1039/C6RA14762C CrossRefGoogle Scholar
  16. 16.
    Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, Cronin SB (2018) Recent progress on stability and passivation of black phosphorus. Adv Mater 30:1704749.  https://doi.org/10.1002/adma.201704749 CrossRefGoogle Scholar
  17. 17.
    Li Q, Zhou Q, Shi L, Chen Q, Wang J (2019) Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J Mater Chem A 7:4291–4312.  https://doi.org/10.1039/C8TA10306B CrossRefGoogle Scholar
  18. 18.
    Ryder CR, Wood JD, Wells SA, Yang Y, Jariwala D, Marks TJ, Hersam MC (2016) Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem 8:597.  https://doi.org/10.1038/nchem.2505 CrossRefPubMedGoogle Scholar
  19. 19.
    Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Chu PK (2017) Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv Mater 29:1703811.  https://doi.org/10.1002/adma.201703811 CrossRefGoogle Scholar
  20. 20.
    Lei W, Liu G, Zhang J, Liu M (2017) Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem Soc Rev 46:3492–3509.  https://doi.org/10.1039/C7CS00021A CrossRefPubMedGoogle Scholar
  21. 21.
    Abellán G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Hirsch A (2016) Noncovalent functionalization of black phosphorus. Angew Chem Int Ed 55:14557–14562.  https://doi.org/10.1002/anie.201604784 CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Wang H, Huang H, Xiao Q, Xu Y, Guo Z, Yu XF (2016) Surface coordination of black phosphorus for robust air and water stability. Angew Chem Int Ed 55:5003–5007.  https://doi.org/10.1002/anie.201512038 CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Li Y, Xu J, Wen Y (2018) Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly (3, 4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C. J Electroanal Chem 814:153–160.  https://doi.org/10.1016/j.jelechem.2018.02.059 CrossRefGoogle Scholar
  24. 24.
    Li X, Niu X, Zhao W, Chen W, Yin C, Men Y, Sun W (2018) Black phosphorene and PEDOT: PSS-modified electrode for electrochemistry of hemoglobin. Electrochem Commun 86:68–71.  https://doi.org/10.1016/j.elecom.2017.11.017 CrossRefGoogle Scholar
  25. 25.
    Niu X, Weng W, Yin C, Niu Y, Li G, Dong R, Sun W (2018) Black phosphorene modified glassy carbon electrode for the sensitive voltammetric detection of rutin. J Electroanal Chem 811:78–83.  https://doi.org/10.1016/j.jelechem.2018.01.038 CrossRefGoogle Scholar
  26. 26.
    Wen Y, Xu J (2017) Scientific importance of water-Processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: a review. J Polym Sci A Polym Chem 55:1121–1150.  https://doi.org/10.1002/pola.28482 CrossRefGoogle Scholar
  27. 27.
    Yao Y, Zhang L, Xu J, Wang X, Duan X, Wen Y (2014) Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode. J Electroanal Chem 713:1–8.  https://doi.org/10.1016/j.jelechem.2013.11.024 CrossRefGoogle Scholar
  28. 28.
    Wen Y, Xu J, Li D, Liu M, Kong F, He H (2012) A novel electrochemical biosensing platform based on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) composites. Synth Met 162:1308–1314.  https://doi.org/10.1016/j.synthmet.2012.03.004 CrossRefGoogle Scholar
  29. 29.
    Wen Y, Xu J, He H, Lu B, Li Y, Dong B (2009) Electrochemical polymerization of 3, 4-ethylenedioxythiophene in aqueous micellar solution containing biocompatible amino acid-based surfactant. J Electroanal Chem 634:49–58.  https://doi.org/10.1016/j.jelechem.2009.07.012 CrossRefGoogle Scholar
  30. 30.
    Kayser LV, Lipomi DJ (2019) Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv Mater 31:1806133.  https://doi.org/10.1002/adma.201806133 CrossRefGoogle Scholar
  31. 31.
    Colleran JJ, Breslin CB (2012) Simultaneous electrochemical detection of the catecholamines and ascorbic acid at PEDOT/S-β-CD modified gold electrodes. J Electroanal Chem 667:30–37.  https://doi.org/10.1016/j.jelechem.2011.12.020 CrossRefGoogle Scholar
  32. 32.
    Wu C, Sun D, Li Q, Wu K (2012) Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors Actuators B Chem 168:178–184.  https://doi.org/10.1016/j.snb.2012.03.084 CrossRefGoogle Scholar
  33. 33.
    Zhang L, Wang Q, Qi Y, Li L, Wang S, Wang X (2019) An ultrasensitive sensor based on polyoxometalate and zirconium dioxide nanocomposites hybrids material for simultaneous detection of toxic clenbuterol and ractopamine. Sensors Actuators B Chem 288:347–355.  https://doi.org/10.1016/j.snb.2019.03.033 CrossRefGoogle Scholar
  34. 34.
    Bai W, Huang H, Li Y, Zhang H, Liang B, Guo R, Zhang Z (2014) Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine. Electrochim Acta 117:322–328.  https://doi.org/10.1016/j.electacta.2013.11.175 CrossRefGoogle Scholar
  35. 35.
    Xie L, Ya Y, Wei L (2017) Mesopores cellular foam-based electrochemical sensor for sensitive determination of ractopamine. Int J Electrochem Sci 12:9714–9724.  https://doi.org/10.20964/2017.10.34 CrossRefGoogle Scholar
  36. 36.
    Liu Z, Zhou Y, Wang Y, Cheng Q, Wu K (2012) Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode. Electrochim Acta 74:139–144.  https://doi.org/10.1016/j.electacta.2012.04.041 CrossRefGoogle Scholar
  37. 37.
    Deng Y, Wu J, Tu K, Xu H, Ma L, Chen J, Qian S (2017) Fabrication of an electrochemical sensor based on a graphene/au composite for the determination of clenbuterol in beef samples. Int J Electrochem Sci 12:6108–6117.  https://doi.org/10.20964/2017.07.19 CrossRefGoogle Scholar
  38. 38.
    Lv CZ, Xun Y, Cao Z, Xie JL, Li D, Liu G, Tan SZ (2017) Sensitive determination of toxic Clenbuterol in pig meat and pig liver based on a carbon nanopolymer composite. Food Anal Methods 10:2252–2261.  https://doi.org/10.1007/s12161-017-0796-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yu Ge
    • 1
    • 2
  • Mingren Qu
    • 1
  • Lanjiao Xu
    • 1
    Email author
  • Xiaoqiang Wang
    • 2
  • Junping Xin
    • 1
  • Xiaoning Liao
    • 2
  • Meifa Li
    • 1
  • Mingfang Li
    • 2
  • Yangping Wen
    • 2
    Email author
  1. 1.Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed DevelopmentJiangxi Agricultural UniversityNanchangChina
  2. 2.Institute of Functional Materials and Agricultural Applied ChemistryJiangxi Agricultural UniversityNanchangPeople’s Republic of China

Personalised recommendations