Microchimica Acta

, 186:795 | Cite as

Nitrogen-doped carbon frameworks decorated with palladium nanoparticles for simultaneous electrochemical voltammetric determination of uric acid and dopamine in the presence of ascorbic acid

  • Yao Yao
  • Ji Zhong
  • Zhiwei Lu
  • Xin Liu
  • Yanying Wang
  • Tao Liu
  • Ping Zou
  • Xianxiang Dai
  • Xianxiang Wang
  • Fang Ding
  • Cailong Zhou
  • Qingbiao ZhaoEmail author
  • Hanbing RaoEmail author
Original Paper


A glassy carbon electrode (GCE) was modified with nitrogen-enriched carbon frameworks decorated with palladium nanoparticles (Pd@NCF/GCEs). The modified GCE is shown to be a viable tool for determination of uric acid (UA) and dopamine (DA) in the presence of ascorbic acid (AA). The Pd@NCF was fabricated though one-step pyrolysis and characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen-adsorption/desorption analysis. The Pd@NCF/GCE was characterized by differential pulse voltammetry (DPV). Both UA and DA have pronounced oxidation peaks (at 360 mV for UA and 180 mV for DA, all vs. Ag/AgCl) in the presence of AA. Response is linear in the 0.5-100 μM UA concentration range and in the 0.5-230 μM DA concentration range. The detection limits are 76 and 107 nM, respectively (at S/N = 3). This electrode is stable, reproducible and highly selective. It was used for UA and DA determination in spiked serum samples.

Graphical abstract

Schematic representation of nitrogen-enriched carbon frameworks decorated with palladium nanoparticles co-modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid.


Electrochemical sensor Simultaneous determination Non-enzymatic Amperometric response Modified electrode Biological small molecule 



This work was funded by the Sichuan Agricultural University Research Interest Project (Project No. 2018324).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, human serum samples were received from the Sichuan Agricultural University Hospital in China.

Supplementary material

604_2019_3907_MOESM1_ESM.docx (5 mb)
ESM 1 (DOCX 5.04 MB)


  1. 1.
    Rock KL, Kataoka H, Lai J-J (2012) Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol 9:13CrossRefGoogle Scholar
  2. 2.
    Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334(6180):345–348CrossRefGoogle Scholar
  3. 3.
    Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60(13):769A–793ACrossRefGoogle Scholar
  4. 4.
    Moghadam MR, Dadfarnia S, Shabani AMH, Shahbazikhah P (2011) Chemometric-assisted kinetic–spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal Biochem 410(2):289–295CrossRefGoogle Scholar
  5. 5.
    Chandra S, Singh VK, Yadav PK, Bano D, Kumar V, Pandey VK, Talat M, Hasan SH (2019) Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal Chim Acta 1054:145–156CrossRefGoogle Scholar
  6. 6.
    Kumbhat S, Shankaran DR, Kim SJ, Gobi KV, Joshi V, Miura N (2007) Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule. Biosens Bioelectron 23(3):421–427CrossRefGoogle Scholar
  7. 7.
    Huang C, Chen X, Lu Y, Yang H, Yang W (2015) Electrogenerated chemiluminescence behavior of peptide nanovesicle and its application in sensing dopamine. Biosens Bioelectron 63:478–482CrossRefGoogle Scholar
  8. 8.
    Feng X, Zhang Y, Yan Z, Chen N, Ma Y, Liu X, Yang X, Hou W (2013) Self-degradable template synthesis of polyaniline nanotubes and their high performance in the detection of dopamine. J Mater Chem A 1(34):9775–9780CrossRefGoogle Scholar
  9. 9.
    Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 4(15):4594–4602CrossRefGoogle Scholar
  10. 10.
    Li Y, Jiang Y, Song Y, Li Y, Li S (2018) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta 185(8):382CrossRefGoogle Scholar
  11. 11.
    Sroysee W, Chairam S, Amatatongchai M, Jarujamrus P, Tamuang S, Pimmongkol S, Chaicharoenwimolkul L, Somsook E (2018) Poly(m-ferrocenylaniline) modified carbon nanotubes-paste electrode encapsulated in nafion film for selective and sensitive determination of dopamine and uric acid in the presence of ascorbic acid. J Saudi Chem Soc 22(2):173–182CrossRefGoogle Scholar
  12. 12.
    Bellido-Milla D, Cubillana-Aguilera LM, El Kaoutit M, Hernández-Artiga MP, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodríguez I, Palacios-Santander JM (2013) Recent advances in graphite powder-based electrodes. Anal Bioanal Chem 405(11):3525–3539CrossRefGoogle Scholar
  13. 13.
    Zhu C, Du D, Eychmüller A, Lin Y (2015) Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem Rev 115(16):8896–8943CrossRefGoogle Scholar
  14. 14.
    Huang X, Li Y, Chen Y, Zhou E, Xu Y, Zhou H, Duan X, Huang Y (2013) Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew Chem Int Ed 52(9):2520–2524CrossRefGoogle Scholar
  15. 15.
    Monai M, Montini T, Melchionna M, Duchoň T, Kúš P, Tsud N, Prince KC, Matolin V, Gorte RJ, Fornasiero P (2016) Phosphorus poisoning during wet oxidation of methane over Pd@CeO2/graphite model catalysts. Appl Catal B 197:271–279CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Li M, Chen Q, Cai D, Zhan H (2017) Dendritic unzipped carbon nanofibers enable uniform loading of surfactant-free Pd nanoparticles for the electroanalysis of small biomolecules. J Mater Chem B 5(12):2254–2262CrossRefGoogle Scholar
  17. 17.
    Lu Z, Dai W, Lin X, Liu B, Zhang J, Ye J, Ye J (2018) Facile one-step fabrication of a novel 3D honeycomb-like bismuth nanoparticles decorated N-doped carbon nanosheet frameworks: ultrasensitive electrochemical sensing of heavy metal ions. Electrochim Acta 266:94–102CrossRefGoogle Scholar
  18. 18.
    Dong Y, Yu M, Wang Z, Liu Y, Wang X, Zhao Z, Qiu J (2016) A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv Funct Mater 26(42):7590–7598CrossRefGoogle Scholar
  19. 19.
    Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D, Bando Y (2013) Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun 4:2905CrossRefGoogle Scholar
  20. 20.
    Wang F, Wang K, Dong X, Mei X, Zhai Z, Zheng B, Lv J, Duan W, Wang W (2017) Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet. Appl Surf Sci 419:893–900CrossRefGoogle Scholar
  21. 21.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRefGoogle Scholar
  22. 22.
    Deng W, Yuan X, Tan Y, Ma M, Xie Q (2016) Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules. Biosens Bioelectron 85:618–624CrossRefGoogle Scholar
  23. 23.
    H-q S, Zhu Q, Zheng X-j, X-g C (2015) One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J Mater Chem A 3(19):10368–10377CrossRefGoogle Scholar
  24. 24.
    Lu Z, Zhang J, Dai W, Lin X, Ye J, Ye J (2017) A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim Acta 184(12):4731–4740CrossRefGoogle Scholar
  25. 25.
    Xu T-Q, Zhang Q-L, Zheng J-N, Lv Z-Y, Wei J, Wang A-J, Feng J-J (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115:109–115CrossRefGoogle Scholar
  26. 26.
    Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183(9):2517–2523CrossRefGoogle Scholar
  27. 27.
    Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2017) Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim Acta 184(12):4603–4610CrossRefGoogle Scholar
  28. 28.
    Hou J, Xu C, Zhao D, Zhou J (2016) Facile fabrication of hierarchical nanoporous AuAg alloy and its highly sensitive detection towards dopamine and uric acid. Sensors Actuators B Chem 225:241–248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yao Yao
    • 1
  • Ji Zhong
    • 1
  • Zhiwei Lu
    • 1
  • Xin Liu
    • 1
  • Yanying Wang
    • 1
  • Tao Liu
    • 2
  • Ping Zou
    • 1
  • Xianxiang Dai
    • 1
  • Xianxiang Wang
    • 1
  • Fang Ding
    • 3
  • Cailong Zhou
    • 4
  • Qingbiao Zhao
    • 5
    Email author
  • Hanbing Rao
    • 1
    Email author
  1. 1.College of ScienceSichuan Agricultural UniversityYa’anPeople’s Republic of China
  2. 2.College of Information EngineeringSichuan Agricultural UniversityYa’anPeople’s Republic of China
  3. 3.Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  4. 4.School of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China
  5. 5.Key Laboratory of Polar Materials and Devices (MOE), Department of OptoelectronicsEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations