Microchimica Acta

, 186:745 | Cite as

Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid

  • Shujuan ZhuoEmail author
  • Jing Fang
  • Meng Li
  • Jing Wang
  • Changqing ZhuEmail author
  • Jinyan Du
Original Paper


A colorimetric assay is presented for the determination of ascorbic acid (AA). Manganese(II) doped carbon dots (Mn-CDs) were prepared by a convenient hydrothermal route and are shown to possess oxidase-like catalytic ability. They catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by dissolved oxygen to form a blue colored product (oxTMB). AA can reduce blue oxTMB to colorless TMB. The fading of the blue color (measured at 652 nm) can be applied for quantifying AA in the 50 to 2500 nM concentration range and with a 9 nM detection limit. The method was successfully used for the quantitation of AA in real samples.

Graphical abstract

Schematic representation of a colorimetric assay platform for the sensitive detection of ascorbic acid (AA) in view of inhibitory effect of AA on the 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation, benefitting from excellent oxidase-like catalytic activity of manganese(II) doped carbon dots (Mn-CDs).


Metal doping Enzyme mimetic Nanozyme Tetramethylbenzidine Colorimetry Ascorbic acid assay Oxidase-like activity Optical sensor Inhibitory effect Blood serum 



This work was supported by Anhui Laboratory of Molecule-Based Materials Open Fund (No. fzj19006) and National Natural Science Foundation of China (Nos. 21303003, 21375003 and 21705003).

Compliance with ethical standards

Competing interests

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3887_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1282 kb)


  1. 1.
    Cui WW, Wang YY, Yang DD, Du JX (2017) Fluorometric determination of ascorbic acid by exploiting its deactivating effect on the oxidase–mimetic properties of cobalt oxyhydroxide nanosheets. Microchim Acta 184(12):4749–4755CrossRefGoogle Scholar
  2. 2.
    Tan HL, Ma CJ, Gao L, Li Q, Song YH, Xu FG, Wang T, Wang L (2014) Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem Eur J 20(49):16377–16383CrossRefPubMedGoogle Scholar
  3. 3.
    Gökmen V, Kahraman N, Demir N, Acar J (2000) Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables. J Chromatogr A 881(1–2):309–316CrossRefPubMedGoogle Scholar
  4. 4.
    Wang ZH, Teng X, Lu C (2012) Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid. Analyst 137(8):1876–1881CrossRefPubMedGoogle Scholar
  5. 5.
    Malashikhina N, Pavlov V (2012) DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Biosens Bioelectron 33(1):241–246CrossRefPubMedGoogle Scholar
  6. 6.
    Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34(1):125–131CrossRefPubMedGoogle Scholar
  7. 7.
    Li SQ, Liu XD, Chai HX, Huang YM (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Anal Chem 105:391–403CrossRefGoogle Scholar
  8. 8.
    Zhong QM, Chen YY, Qin X, Wang YL, Yuan CL, Xu YJ (2019) Colorimetric enzymatic determination of glucose based on etching of gold nanorods by iodine and using carbon quantum dots as peroxidase mimics. Microchim Acta 186(3):161CrossRefGoogle Scholar
  9. 9.
    Yang HG, Yang RT, Zhang P, Qin YM, Chen T, Ye FG (2017) A bimetallic (co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635CrossRefGoogle Scholar
  10. 10.
    Dashtestani F, Ghourchian H, Eskandari K, Rafiee-Pour HA (2015) A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim Acta 182(5–6):1045–1053CrossRefGoogle Scholar
  11. 11.
    Liang H, Lin FF, Zhang ZJ, Liu BW, Jiang SH, Yuan QP, Liu JW (2017) Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9(2):1352–1360CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang MR, Yang N, Liu YX, Tang JG (2019) Synthesis of catalase-inorganic hybrid nanoflowers via sonication for colorimetric detection of hydrogen peroxide. Enzym Microb Technol 128:22–25CrossRefGoogle Scholar
  13. 13.
    Ge J, Xing K, Geng X, Hu YL, Shen XP, Zhang L, Li ZH (2018) Human serum albumin templated MnO2 nanosheets are oxidase mimics for colorimetric determination of hydrogen peroxide and for enzymatic determination of glucose. Microchim Acta 185(12):559CrossRefGoogle Scholar
  14. 14.
    Sun CQ, Zhang X, Tang MH, Liu L, Shi Y, Gao CH, Liao B, Zheng HZ (2019) New optical method for the determination of β-galactosidase and α-fetoprotein based on oxidase-like activity of fluorescein. Talanta 194:164–170CrossRefPubMedGoogle Scholar
  15. 15.
    Deng HH, Lin XL, He SB, Wu GW, Wu WH, Yang Y, Lin Z, Peng HP, Xia XH, Chen W (2019) Colorimetric tyrosinase assay based on catechol inhibition of the oxidase-mimicking activity of chitosan-stabilized platinum nanoparticles. Microchim Acta 186(5):301CrossRefGoogle Scholar
  16. 16.
    Darabdhara G, Boruah PK, Das MR (2019) Colorimetric determination of glucose in solution and via the use of a paper strip by exploiting the peroxidase and oxidase mimicking activity of bimetallic cu-Pd nanoparticles deposited on reduced graphene oxide, graphitic carbon nitride, or MoS2 nanosheets. Microchim Acta 186(1):13CrossRefGoogle Scholar
  17. 17.
    Zhu SY, Lei CH, Sun J, Zhao XE, Wang X, Yan XL, Liu W, Wang H (2019) Probing NAD+/NADH-dependent biocatalytic transformations based on oxidase mimics of MnO2. Sensors Actuators B Chem 282:896–903CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Dai CL, Liu W, Wang YY, Ding F, Zou P, Wang XX, Zhao QB, Rao HB (2019) Ultrathin films of a metal-organic framework prepared from 2-methylimidazole, manganese(II) and cobalt(II) with strong oxidase-mimicking activity for colorimetric determination of glutathione and glutathione reductase activity. Microchim Acta 186(6):340CrossRefGoogle Scholar
  19. 19.
    Zhuo SJ, Guan YY, Li H, Fang J, Zhang P, Du JY, Zhu CQ (2019) Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application. Analyst 144(2):656–662CrossRefGoogle Scholar
  20. 20.
    Zhuo SJ, Gao LL, Zhang P, Du JY, Zhu CQ (2018) Living cell imaging and sensing of hydrogen sulfide using high-efficiency fluorescent cu-doped carbon quantum dots. New J Chem 42(24):19659–19664CrossRefGoogle Scholar
  21. 21.
    Zhu D, Zhuo SJ, Zhu CQ, Zhang P, Shen WL (2019) Synthesis of catalytically active peroxidase-like Fe-doped carbon dots and application for ratiometric fluorescence detection of hydrogen peroxide and glucose. Anal Methods 11:2663–2668CrossRefGoogle Scholar
  22. 22.
    Lv Y, Ma ML, Huang YC, Xia YS (2019) Carbon dot nanozymes: how to be close to natural enzymes. Chem Eur J 25(4):954–960Google Scholar
  23. 23.
    Schneider J, Reckmeier CJ, Xiong Y, Seckendorff MV, Susha AS, Kasák P, Rogach AL (2017) Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C 121(3):2014–2022CrossRefGoogle Scholar
  24. 24.
    Pakkath SAR, Chetty SS, Selvarasu P, Murugan AV, Kumar Y, Periyasamy L, Santhakumar M, Sadras SR, Santhakumar K (2018) Transition metal ion (Mn2+, Fe2+, Co2+, and Ni2+)-doped carbon dots synthesized via microwave-assisted pyrolysis: a potential nanoprobe for magneto-fluorescent dual-modality bioimaging. ACS Biomater Sci Eng 4(7):2582–2596CrossRefGoogle Scholar
  25. 25.
    Jin XZ, Sun XB, Chen G, Ding LX, Li YH, Liu ZK, Wang ZJ, Pan W, Hu CH, Wang JP (2015) pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells. Carbon 81:388–395CrossRefGoogle Scholar
  26. 26.
    Yan X, Song Y, Wu XL, Zhu CZ, Su XG, Du D, Lin YH (2017) Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 9(6):2317–2323CrossRefGoogle Scholar
  27. 27.
    Chi MQ, Zhu Y, Jing LW, Wang C, Lu XF (2019) Fabrication of oxidase-like polyaniline-MnO2 hybrid nanowires and their sensitive colorimetric detection of sulfite and ascorbic acid. Talanta 191:171–179CrossRefGoogle Scholar
  28. 28.
    Chen QM, Liang CH, Zhang XD, Huang YM (2018) High oxidase-mimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine. Talanta 182:476–483CrossRefPubMedGoogle Scholar
  29. 29.
    Wang YY, Yang Y, Liu W, Ding F, Zou P, Wang XX, Zhao QB, Rao HB (2019) A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase. Microchim Acta 186(4):246CrossRefGoogle Scholar
  30. 30.
    Chen J, Ge J, Zhang L, Li ZH, Li JJ, Sun YJ, Qu LB (2016) Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchim Acta 183(6):1847–1853CrossRefGoogle Scholar
  31. 31.
    Yang XH, Ling J, Peng J, Cao QE, Wang L, Ding ZT, Xiong J (2013) Catalytic formation of silver nanoparticles by bovine serum albumin protected-silver nanoclusters and its application for colorimetric detection of ascorbic acid. Spectrochim Acta A Mol Biomol Spectrosc 106:224–230CrossRefPubMedGoogle Scholar
  32. 32.
    Wu TT, Ma ZY, Li PP, Liu ML, Liu XY, Li HT, Zhang YY, Yao SZ (2019) Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe–co bimetallic alloy encapsulated porous carbon nanocages. Talanta 202:354–361CrossRefPubMedGoogle Scholar
  33. 33.
    Chandra S, Singh VK, Yadav PK, Bano D, Kumar V, Pandey VK, Talat M, Hasan SH (2019) Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal Chim Acta 1054:145–156CrossRefPubMedGoogle Scholar
  34. 34.
    Liu XL, Wang XH, Qi C, Han QS, Xiao W, Cai SF, Wang C, Yang R (2019) Sensitive colorimetric detection of ascorbic acid using Pt/CeO2 nanocomposites as peroxidase mimics. Appl Surf Sci 479:532–539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials ScienceAnhui Normal UniversityWuhuPeople’s Republic of China
  2. 2.Anhui Meijia New Materials Company LimitedWuhuPeople’s Republic of China

Personalised recommendations