Advertisement

Microchimica Acta

, 186:750 | Cite as

Two-dimensional MXene nanosheets (types Ti3C2Tx and Ti2CTx) as new ion-to-electron transducers in solid-contact calcium ion-selective electrodes

  • Yuzhou Shao
  • Yao Yao
  • Chengmei Jiang
  • Fengnian Zhao
  • Xiaoxue Liu
  • Yibin Ying
  • Jianfeng PingEmail author
Original Paper
  • 63 Downloads

Abstract

Two kinds of two-dimensional MXene (of type Ti3C2Tx and Ti2CTx) nanosheets are described for use in solid-contact ion-selective electrodes (SC-ISEs) where they act as ion-to-electron transducers. Electrochemical characterizations show that the MXene-coated electrodes possess high double layer capacitance and enable rapid electron transport. This demonstrates the enhanced efficiency of MXene-based solid-contact layers to improve ion-electron transduction. Both Ti3C2Tx- and Ti2CTx-based SC-ISEs exhibited a Nernstian response (26.4 and 24.9 mV/decade, respectively) between 10−1 and 10–5.5 M Ca(II) concentrations with rapid response (<10 s) and low limits of detection (0.79 μM and 1.0 μM, respectively). The SC-ISEs display a lower charge impedance compared to ISEs without solid-contact layer. The new SC-ISEs possess outstanding potentiometric performance, extraordinary long-term stability, and insensitivity to light, CO2, O2, and redox couples, thus showing great promising prospect for routine sensing applications.

Graphical abstract

Schematic representation of MXene nanosheets for use as new intermediate layers in solid-contact ion-selective electrodes (SC-ISEs) for the potentiometric detection of calcium ion.

Keywords

All-solid-state potentiometric sensor Two-dimensional nanomaterials Electrochemical sensors Ion-to-electron transduction Calcium ion Water sample 

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2019FZA6004).

Supplementary material

604_2019_3878_MOESM1_ESM.docx (8.3 mb)
ESM 1 (DOCX 8.29 mb)

References

  1. 1.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253CrossRefGoogle Scholar
  2. 2.
    Jiang C, Wu C, Li X, Yao Y, Lan L, Zhao F, Ye Z, Ying Y, Ping J (2019) All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59:268–276CrossRefGoogle Scholar
  3. 3.
    Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005CrossRefGoogle Scholar
  4. 4.
    Akuzum B, Maleski K, Anasori B, Lelyukh P, Alvarez NJ, Kumbur EC, Gogotsi Y (2018) Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12(3):2685–2694CrossRefGoogle Scholar
  5. 5.
    Mariano M, Mashtalir O, Antonio FQ, Ryu WH, Deng B, Xia F, Gogotsi Y, Taylor AD (2016) Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 8(36):16371–16378CrossRefGoogle Scholar
  6. 6.
    Miranda A, Halim J, Barsoum MW, Lorke A (2016) Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl Phys Lett 108(3):033102CrossRefGoogle Scholar
  7. 7.
    Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4:1716CrossRefGoogle Scholar
  8. 8.
    Yu X, Li Y, Cheng J, Liu Z, Li Q, Li W, Yang X, Xiao B (2015) Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 7(24):13707–13713CrossRefGoogle Scholar
  9. 9.
    Wang F, Yang C, Duan M, Tang Y, Zhu J (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 74:1022–1028CrossRefGoogle Scholar
  10. 10.
    Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors Actuators B Chem 218:60–66CrossRefGoogle Scholar
  11. 11.
    Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 121:243–249CrossRefGoogle Scholar
  12. 12.
    Wu L, You Q, Shan Y, Gan S, Zhao Y, Dai X, Xiang Y (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sensors Actuators B Chem 277:210–215CrossRefGoogle Scholar
  13. 13.
    Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28(17):3333–3339CrossRefGoogle Scholar
  14. 14.
    Yao Y, Jiang C, Ping J (2019) Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens Bioelectron 123:178–184CrossRefGoogle Scholar
  15. 15.
    Cattrall RW, Freiser H (1971) Coated wire ion selective electrodes. Anal Chem 43(13):1905–1906CrossRefGoogle Scholar
  16. 16.
    Bobacka J (1999) Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem 71(21):4932–4937CrossRefGoogle Scholar
  17. 17.
    Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351CrossRefGoogle Scholar
  18. 18.
    Ping J, Wang Y, Wu J, Ying Y (2011) Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem Commun 13(12):1529–1532CrossRefGoogle Scholar
  19. 19.
    Xu G, Cheng C, Yuan W, Liu Z, Zhu L, Li X, Lu Y, Chen Z, Liu J, Cui Z, Liu J, Men H, Liu Q (2019) Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sensors Actuators B Chem 297:126743CrossRefGoogle Scholar
  20. 20.
    Jiang C, Yao Y, Cai Y, Ping J (2019) All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer. Sensors Actuators B Chem 283:284–289CrossRefGoogle Scholar
  21. 21.
    Yao Y, Ying Y, Ping J (2019) Development of a graphene paper-based flexible solid-contact lead ion-selective electrode and its application in water. Trans ASABE 62(2):245–252CrossRefGoogle Scholar
  22. 22.
    Hu J, Stein A, Buehlmann P (2016) Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trac-Trends Anal Chem 76:102–114CrossRefGoogle Scholar
  23. 23.
    Criscuolo F, Taurino I, Stradolini F, Carrara S, De Micheli G (2018) Highly-stable Li+ ion-selective electrodes based on noble metal nanostructured layers as solid-contacts. Anal Chim Acta 1027:22–32CrossRefGoogle Scholar
  24. 24.
    Zeng X, Yu S, Yuan Q, Qin W (2016) Solid-contact K+-selective electrode based on three-dimensional molybdenum sulfide nanoflowers as ion-to-electron transducer. Sensors Actuators B Chem 234:80–83CrossRefGoogle Scholar
  25. 25.
    Zeng X, Qin W (2017) A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Anal Chim Acta 982:72–77CrossRefGoogle Scholar
  26. 26.
    Kou L, Fu M, Liang R (2017) Solid-contact Ca2+-selective electrodes based on two-dimensional black phosphorus as ion-to-electron transducers. RSC Adv 7(69):43905–43908CrossRefGoogle Scholar
  27. 27.
    Mendecki L, Mirica KA (2018) Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl Mater Interfaces 10(22):19248–19257CrossRefGoogle Scholar
  28. 28.
    Liu F, Zhou A, Chen J, Jin J, Zhou W, Wang L, Hu Q (2017) Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci 416:781–789CrossRefGoogle Scholar
  29. 29.
    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mat 29(18):7633–7644CrossRefGoogle Scholar
  30. 30.
    Ghidiu M, Lukatskaya MR, Zhao M, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 516(7529):78–81CrossRefGoogle Scholar
  31. 31.
    Lee E, Mohammadi AV, Prorok BC, Yoon YS, Beidaghi M, Kim DJ (2017) Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces 9(42):37184–37190CrossRefGoogle Scholar
  32. 32.
    Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1(3):589–594CrossRefGoogle Scholar
  33. 33.
    Li L, Wang F, Zhu J, Wu W (2017) The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Trans 46(43):14880–14887CrossRefGoogle Scholar
  34. 34.
    Ping J, Wang Y, Ying Y, Wu J (2012) Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal Chem 84(7):3473–3479CrossRefGoogle Scholar
  35. 35.
    Bakker E, Pretsch E, Buhlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72(6):1127–1133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yuzhou Shao
    • 1
  • Yao Yao
    • 1
  • Chengmei Jiang
    • 1
  • Fengnian Zhao
    • 1
  • Xiaoxue Liu
    • 1
  • Yibin Ying
    • 1
    • 2
  • Jianfeng Ping
    • 1
    Email author
  1. 1.School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Zhejiang A&F UniversityHangzhouPeople’s Republic of China

Personalised recommendations