Advertisement

Microchimica Acta

, 186:763 | Cite as

Whey peptide-encapsulated silver nanoparticles as a colorimetric and spectrophotometric probe for palladium(II)

  • Gajanan Ghodake
  • Surendra Shinde
  • Rijuta Ganesh Saratale
  • Avinash Kadam
  • Ganesh Dattatraya Saratale
  • Rahul Patel
  • Ashok Kumar
  • Sunil Kumar
  • Dae-Young KimEmail author
Original Paper
  • 53 Downloads

Abstract

Silver nanoparticles (AgNPs) coated with whey peptides are shown to be a useful optical nanoprobe for the highly sensitive determination of Pd(II). The peptidic surface of the AgNPs works as a molecular receptor for the rapid detection of Pd(II) via a color change from dark yellow to orange/red along with a spectral red-shift with a gap about 120 nm. The effect is caused by the formation of a coordination complex between Pd(II) and the peptide ligands. This results in the aggregation of AgNPs and an absorbance spectral shift from 410 to 530 nm. The absorbance response is linear in the range 0.1 to 1.3 μM Pd(II) with a low detection limit of 115 nM. The nanoprobe responds within a few minutes and is not interfered by other metal ions except for Mg(II). The probe potentially can be applied to the determination of Pd(II) contamination in the products of Pd(II)−catalyzed organic reactions and in pharmaceutical settings.

Graphical abstract

Schematic representation of the nanoprobe for Pd(II). (a) Synthesis of whey peptide-coated silver nanoparticles (AgNPs), (b) the nanoprobe design for Pd(II) detection, (c) HR-TEM imaging and elemental mapping, (d) quantitative determination of Pd(II) (Inset shows colorimetric results).

Keywords

Whey waste Optical probe Metal ions Molecular receptor Absorbance probe Whey proteins Coordination chemistry HR-TEM EDS 

Notes

Acknowledgments

This work was supported by the Dongguk University Research Fund of 2018-2020.

Compliance with ethical standards

Conflict of interest

The authors confirm that there is no conflict of interest to declare.

Supplementary material

604_2019_3877_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1560 kb)

References

  1. 1.
    Miller MA, Askevold B, Mikula H, Kohler RH, Pirovich D, Weissleder R (2017) Nano-palladium is a cellular catalyst for in vivo chemistry. Nat Commun 8:15906.  https://doi.org/10.1038/ncomms15906 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    King AO, Yasuda N (2004) Palladium-catalyzed cross-coupling reactions in the synthesis of pharmaceuticals. Organometallic Process Chemistry Berlin, Heidelberg: Springer Berlin Heidelberg, 205–245.  https://doi.org/10.1007/b94551
  3. 3.
    Hou J-T, Li K, Yu K-K, Ao M-Z, Wang X, Yu X-Q (2013) Novel triazole-based fluorescent probes for Pd2+ in aqueous solutions: design, theoretical calculations and imaging. Analyst 138(21):6632–6638.  https://doi.org/10.1039/C3AN01183F CrossRefPubMedGoogle Scholar
  4. 4.
    Li H, Fan J, Peng X (2013) Colourimetric and fluorescent probes for the optical detection of palladium ions. Chem Soc Rev 42(19):7943–7962.  https://doi.org/10.1039/c3cs60123d CrossRefPubMedGoogle Scholar
  5. 5.
    Balamurugan R, Liu J-H, Liu B-T (2018) A review of recent developments in fluorescent sensors for the selective detection of palladium ions. Coord Chem Rev 376:196–224.  https://doi.org/10.1016/j.ccr.2018.07.017 CrossRefGoogle Scholar
  6. 6.
    Houk RT, Wallace KJ, Hewage HS, Anslyn EV (2008) A colorimetric chemodosimeter for Pd(II): a method for detecting residual palladium in cross-coupling reactions. Tetrahedron 64(36):8271–8278.  https://doi.org/10.1016/j.tet.2008.04.105 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Williams JM, Koide K (2013) A high-throughput method to detect palladium in ores. Ind Eng Chem Res 252(25):8612–8615.  https://doi.org/10.1021/ie400959z CrossRefGoogle Scholar
  8. 8.
    Van Meel K, Smekens A, Behets M, Kazandjian P, Van Grieken R (2007) Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target x-ray fluorescence spectrometry. Anal Chem 79(16):6383–6389.  https://doi.org/10.1021/ac070815r CrossRefPubMedGoogle Scholar
  9. 9.
    Cai S, Lu Y, He S, Wei F, Zhao L, Zeng X (2013) A highly sensitive and selective turn-on fluorescent chemosensor for palladium based on a phosphine–rhodamine conjugate. Chem Commun 49(8):822–824.  https://doi.org/10.1039/C2CC37746B CrossRefGoogle Scholar
  10. 10.
    Liu B, Chen W, Liu D et al (2016) Detection of trace levels of Pd2+ in pure water using a fluorescent probe assisted by surfactants. Sensor Actuator B-Chem 237:899–904.  https://doi.org/10.1016/j.snb.2016.07.024 CrossRefGoogle Scholar
  11. 11.
    Huang Q, Zhou Y, Zhang Q et al (2015) A new “off–on” fluorescent probe for Pd2+ in aqueous solution and live-cell based on spirolactam ring-opening reaction. Sensor Actuator B-Chem 208:22–29.  https://doi.org/10.1016/j.snb.2014.11.012 CrossRefGoogle Scholar
  12. 12.
    Wang K, Lai G, Li Z, Liu M, Shen Y, Wang C (2015) A novel colorimetric and fluorescent probe for the highly selective and sensitive detection of palladium based on Pd(0) mediated reaction. Tetrahedron 71(41):7874–7878.  https://doi.org/10.1016/j.tet.2015.08.021 CrossRefGoogle Scholar
  13. 13.
    Chen Y, Zhang M, Han Y, Wei J (2016) A depropargylation-triggered spontaneous cyclization based fluorescent “turn-on” chemodosimeter for the detection of palladium ions and its application in live-cell imaging. RSC Adv 6(10):8380–8383.  https://doi.org/10.1039/C5RA23645B CrossRefGoogle Scholar
  14. 14.
    Kubota K, Dai P, Pentelute BL, Buchwald SL (2018) Palladium oxidative addition complexes for peptide and protein cross-linking. J Am Chem Soc 140(8):3128–3133.  https://doi.org/10.1021/jacs.8b00172 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cheng W-M, Lu X, Shi J, Liu L (2018) Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Org Chem Front 5(21):3186–3193.  https://doi.org/10.1039/C8QO00765A CrossRefGoogle Scholar
  16. 16.
    Zong J, Cobb SL, Cameron NR (2017) Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci 5(5):872–886.  https://doi.org/10.1039/C7BM00006E CrossRefPubMedGoogle Scholar
  17. 17.
    Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445-446:385–396.  https://doi.org/10.1016/j.scitotenv.2012.12.038 CrossRefPubMedGoogle Scholar
  18. 18.
    Slavov AK (2017) General characteristics and treatment possibilities of dairy wastewater - a review. Food Technol Biotechnol 55(1):14–28.  https://doi.org/10.17113/ftb.55.01.17.4520 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jeewanthi RKC, Lee N-K, Paik H-D (2015) Improved functional characteristics of whey protein hydrolysates in food industry. Food Sci Anim Resour 35(3):350–359.  https://doi.org/10.5851/kosfa.2015.35.3.350 CrossRefGoogle Scholar
  20. 20.
    Pettit LD, Bezer M (1985) Complex formation between palladium(II) and amino acids, peptides and related ligands. Coord Chem Rev 61:97–114.  https://doi.org/10.1016/0010-8545(85)80003-5 CrossRefGoogle Scholar
  21. 21.
    Ghodake G, Lim S-R, Lee DS (2013) Casein hydrolytic peptides mediated green synthesis of antibacterial silver nanoparticles. Colloids Surf B: Biointerfaces 108:147–151.  https://doi.org/10.1016/j.colsurfb.2013.02.044 CrossRefPubMedGoogle Scholar
  22. 22.
    Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107(6):2228–2269.  https://doi.org/10.1021/cr050943k CrossRefPubMedGoogle Scholar
  23. 23.
    Wu W, Wu M, Sun Z et al (2013) Morphology controllable synthesis of silver nanoparticles: optical properties study and SERS application. J Alloy Compound 579:117–123.  https://doi.org/10.1016/j.jallcom.2013.05.044 CrossRefGoogle Scholar
  24. 24.
    Fageria L, Pareek V, Dilip RV et al (2017) Biosynthesized protein-capped silver nanoparticles induce ros-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega 2(4):1489–1504.  https://doi.org/10.1021/acsomega.7b00045 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim D-Y, Shinde S, Ghodake G (2017) Colorimetric detection of magnesium (II) ions using tryptophan functionalized gold nanoparticles. Sci Rep 7(1):3966.  https://doi.org/10.1038/s41598-017-04359-4 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Khrustalev VV, Barkovsky EV, Khrustaleva TA (2016) Magnesium and manganese binding sites on proteins have the same predominant motif of secondary structure. J Theoret Biol 395:174–185.  https://doi.org/10.1016/j.jtbi.2016.02.006 CrossRefGoogle Scholar
  27. 27.
    Qi L, Shang Y, Wu F (2012) Colorimetric detection of lead (II) based on silver nanoparticles capped with iminodiacetic acid. Microchim Acta 178(1):221–227.  https://doi.org/10.1007/s00604-012-0832-3 CrossRefGoogle Scholar
  28. 28.
    Song F, Garner AL, Koide K (2007) A highly sensitive fluorescent sensor for palladium based on the allylic oxidative insertion mechanism. J Am Chem Soc 129(41):12354–12355.  https://doi.org/10.1021/ja073910q CrossRefPubMedGoogle Scholar
  29. 29.
    Li H, Fan J, Du J et al (2010) A fluorescent and colorimetric probe specific for palladium detection. Chem Commun 46(7):1079–1081CrossRefGoogle Scholar
  30. 30.
    Liu F, Du J, Xu M, Sun G (2016) A highly sensitive fluorescent sensor for palladium and direct imaging of its ecotoxicity in living model organisms. Chem Asian J 11(1):43–48.  https://doi.org/10.1002/asia.201500767 CrossRefPubMedGoogle Scholar
  31. 31.
    Li H, Fan J, Song F et al (2010) Fluorescent probes for Pd2+ detection by allylidene–hydrazone ligands with excellent selectivity and large fluorescence enhancement. Chem Eur J 16(41):12349–12356CrossRefGoogle Scholar
  32. 32.
    Goswami S, Manna A, Maity AK et al (2013) Selective detection and bio-imaging of Pd2+ with novel ‘C–CN’ bond cleavage of cyano-rhodamine, cyanation with diaminomaleonitrile. Dalton Trans 42(36):12844–12848CrossRefGoogle Scholar
  33. 33.
    Xia Q, Feng S, Liu D, Feng G (2018) A highly selective and sensitive colorimetric and near-infrared fluorescent turn-on probe for rapid detection of palladium in drugs and living cells. Sensors Actuators B Chem 258:98–104.  https://doi.org/10.1016/j.snb.2017.11.099 CrossRefGoogle Scholar
  34. 34.
    Jones AH (1976) Determination of platinum and palladium in blood and urine by flameless atomic absorption spectrometry. Anal Chem 48(11):1472–1474.  https://doi.org/10.1021/ac50005a015 CrossRefPubMedGoogle Scholar
  35. 35.
    Pérez-Ràfols C, Trechera P, Serrano N, Díaz-Cruz JM, Ariño C, Esteban M (2017) Determination of Pd(II) using an antimony film coated on a screen-printed electrode by adsorptive stripping voltammetry. Talanta 167:1–7.  https://doi.org/10.1016/j.talanta.2017.01.084 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Gajanan Ghodake
    • 1
  • Surendra Shinde
    • 1
  • Rijuta Ganesh Saratale
    • 2
  • Avinash Kadam
    • 2
  • Ganesh Dattatraya Saratale
    • 3
  • Rahul Patel
    • 3
  • Ashok Kumar
    • 4
  • Sunil Kumar
    • 5
  • Dae-Young Kim
    • 1
    Email author
  1. 1.Department Biological and Environmental Science, College of Life Science and BiotechnologyDongguk University-SeoulGoyang-siRepublic of Korea
  2. 2.Research Institute of Biotechnology and Medical Converged ScienceDongguk University-SeoulGoyang-siRepublic of Korea
  3. 3.Department of Food Science and BiotechnologyDongguk University-SeoulGoyang-siRepublic of Korea
  4. 4.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologySolanIndia
  5. 5.Quantum-functional Semiconductor Research CenterDongguk University-SeoulSeoulRepublic of Korea

Personalised recommendations