Advertisement

Microchimica Acta

, 186:737 | Cite as

A self-powered photoelectrochemical aptamer probe for oxytetracycline based on the use of a NiO nanocrystal/g-C3N4 heterojunction

  • Wei Duan
  • Pengcheng Yan
  • Jintao Dong
  • Yun Chen
  • Xiaoyang He
  • Jianping Chen
  • Junchao Qian
  • Li XuEmail author
  • Henan LiEmail author
Original Paper
  • 80 Downloads

Abstract

A self-powered photoelectrochemical (PEC) aptamer probe is presented for the determination of oxytetracycline (OTC). The assay is based on the use of g-C3N4 and NiO nanocrystals (NCs) which form a heterojunction. The latter was prepared by two-step hydrothermal pyrolysis by using the ionic liquid 1-hydroxyethyl-3-methylimidazole chloride which functions as a morphological template to form NiO NCs. The heterojunction exhibits much better electronic conductivity, wider absorption range, higher electron-hole-separation productivity, and stronger photocurrent compared to plain g-C3N4. The heterojunction was adopted to construct a self-powered PEC aptamer probe for OTC detection. An OTC-binding aptamer was immobilized on the heterojunction and the probe was constructed. The aptamer on the probe binding with OTC can form steric hindrance for transmitting of electrons and cause the PEC signal change depending on the OTC concentration. The photocurrent decreases with increasing OTC concentration in the 0.01 to 100 nM concentration range and its detection limit is 4 pM (at S/N = 3).

Graphical abstract

Schematic representation of a self-powered photochemical aptamer probe. The probe performs enhanced ability for oxytetracycline (OTC) determination due to the formation of NiO nanocrystals/g-C3N4 (NiO NCs/g-C3N4) heterojunction and the specification recognition of the aptamer.

Keywords

NiO g-C3N4 Heterojunction Ionic liquid Self-power Nanocrystals PEC Aptamer Oxytetracycline High sensitivity 

Notes

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (No. 21705058), Six Talent Peaks Project of Jiangsu Province (XNY-009), the Provincial Natural Science Foundation of Jiangsu (No. BK20170524, BK20160492), Chinese Postdoctoral Foundation (2018 T110450), High-tech Research Key laboratory of Zhenjiang (SS2018002) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu University Scientific Research Funding (17JDG007).

Supplementary material

604_2019_3856_MOESM1_ESM.doc (5.3 mb)
ESM 1 (DOC 5.33 kb)

References

  1. 1.
    Ghanbari M, Klose V, Crispie F, Cotter PD (2019) The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci Rep 9:4062.  https://doi.org/10.1038/s41598-019-40496-8 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Naik L, Sharma R, Mann B, Lata K, Rajput YS, Nath BS (2017) Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay. Food Chem 219:85–92.  https://doi.org/10.1016/j.foodchem.2016.09.090 CrossRefPubMedGoogle Scholar
  3. 3.
    Feng MX, Wang GN, Yang K, Liu HZ, Wang JP (2016) Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control 69:171–176.  https://doi.org/10.1016/j.foodcont.2016.04.050 CrossRefGoogle Scholar
  4. 4.
    Chiesa LM, Nobile M, Malandra R, Panseri S, Arioli F (2018) Occurrence of antibiotics in mussels and clams from various FAO areas. Food Chem 240:16–23.  https://doi.org/10.1016/j.foodchem.2017.07.072 CrossRefPubMedGoogle Scholar
  5. 5.
    Wang YL, Sun YJ, Dai HC, Ni PJ, Jiang S, Lu WD, Li Z, Li Z (2016) A colorimetric biosensor using Fe3O4 nanoparticles for highly sensitive and selective detection of tetracyclines. Sensors Actuators B Chem 236:621–626.  https://doi.org/10.1016/j.snb.2016.06.029 CrossRefGoogle Scholar
  6. 6.
    Wang Y, Gan N, Zhou Y, Li TH, Hu FT, Cao YT, Chen YJ (2017) Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens Bioelectron 97:100–106.  https://doi.org/10.1016/j.bios.2017.05.017 CrossRefPubMedGoogle Scholar
  7. 7.
    Liu S, Wang Y, Xu W, Leng XQ, Wang HZ, Guo YN, Huang JD (2017) A novel sandwich-type electrochemical aptasensor based on GR-3D au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens Bioelectron 88:181–187.  https://doi.org/10.1016/j.protcy.2017.04.066 CrossRefPubMedGoogle Scholar
  8. 8.
    Kim SH, Lee HJ (2017) Gold Nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay. Anal Chem 89:6624–6630.  https://doi.org/10.1021/acs.analchem.7b00779 CrossRefPubMedGoogle Scholar
  9. 9.
    Tan B, Zhao HM, Du L, Gan XR, Quan X (2016) A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosens Bioelectron 83:267–273.  https://doi.org/10.1016/j.bios.2016.04.065 CrossRefPubMedGoogle Scholar
  10. 10.
    Yan PC, Jiang DS, Li HN, Bao J, Xu L, Qian JC, Chen C, Xia JX (2019) BiPO4 nanocrystal/BiOCl nanosheet heterojunction as the basis for a photoelectrochemical 4-chlorophenol sensor. Sens Actuators B Chem 279:466–475.  https://doi.org/10.1016/j.snb.2018.10.025 CrossRefGoogle Scholar
  11. 11.
    Cheng WJ, Pan JH, Yang JY, Zheng ZY, Lu FS, Chen YW, Gao WH (2018) A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO2 and visible-light photoelectrochemical activity. Microchim Acta 185:263.  https://doi.org/10.1007/s00604-018-2800-z CrossRefGoogle Scholar
  12. 12.
    Qin CD, Bai X, Zhang Y, Gao K (2018) Photoelectrochemical CdSe/TiO2 nanotube array microsensor for high-resolution in-situ detection of dopamine. Microchim Acta 185:278.  https://doi.org/10.1007/s00604-018-2788-4 CrossRefGoogle Scholar
  13. 13.
    Li HN, Zhu MY, Chen W, Wang K (2017) Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: effective charge separation and application to ultrasensitive sensing of dopamine. Microchim Acta 184:4827–4833.  https://doi.org/10.1007/s00604-017-2529-0 CrossRefGoogle Scholar
  14. 14.
    Fu JW, Yu JG, Jiang CJ, Cheng B (2018) G-C3N4-based heterostructured photocatalysts. Adv Energy Mater 8:1701503.  https://doi.org/10.1002/aenm.201701503 CrossRefGoogle Scholar
  15. 15.
    Zhang GG, Zhang MW, Ye XX, Qiu XQ, Lin S, Wang XC (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26:805–809.  https://doi.org/10.1002/adma.201303611 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang JS, Zhang GG, Chen XF, Lin S, Mohlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang XC (2012) Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew Chem Int Ed 51:3183–3187.  https://doi.org/10.1002/anie.201106656 CrossRefGoogle Scholar
  17. 17.
    Jun YS, Park JH, Lee SU, Thomas A, Hong WH, Stucky GD (2013) Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew Chem Int Ed 52:11083–11087.  https://doi.org/10.1002/anie.201304034 CrossRefGoogle Scholar
  18. 18.
    Kuecken S, Acharjya A, Zhi LJ, Schwarze M, Schomacker R, Thomas A (2017) Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem Commun 53:5854–5857.  https://doi.org/10.1039/C7CC01827D CrossRefGoogle Scholar
  19. 19.
    Tang J, Guo RT, Zhou WG, Huang CY, Pan WG (2018) Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl Catal B Environ 237:802–810.  https://doi.org/10.1016/j.apcatb.2018.06.042 CrossRefGoogle Scholar
  20. 20.
    Shan B, Li TT, Brennaman MK, Nayak A, Wu L, Meyer TJ (2019) Charge transfer from upconverting nanocrystals to semiconducting electrodes: optimizing thermodynamic outputs by electronic energy transfer. J Am Chem Soc 141:463–471.  https://doi.org/10.1021/jacs.8b11110 CrossRefPubMedGoogle Scholar
  21. 21.
    Peng B, Tang L, Zeng GM, Fang SY, Ouyang XL, Long BQ, Zhou YY, Deng YC, Liu YN, Wang JJ (2018) Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C3N4 nanosheets enhanced by surface plasmon resonance effect. Biosens Bioelectron 121:19–26.  https://doi.org/10.1016/j.bios.2018.08.042 CrossRefPubMedGoogle Scholar
  22. 22.
    Bai Y, Xiao S, Hu C, Zhang T, Meng XY, Lin H, Yang YL, Yang SH (2017) Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p-i-n photovoltaics. Adv Energy Mater 7:1701038.  https://doi.org/10.1002/aenm.201701038 CrossRefGoogle Scholar
  23. 23.
    Dai WX, Zhang L, Zhao WW, Yu XD, Xu JJ, Chen HY (2017) Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal Chem 89:8070–8078.  https://doi.org/10.1021/acs.analchem.7b01557 CrossRefPubMedGoogle Scholar
  24. 24.
    Xu YG, Xu H, Wang L, Yan J, Li HM, Song YH, Huang LY, Cai GB (2013) The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Trans 42:7604–7613.  https://doi.org/10.1039/C3DT32871F CrossRefPubMedGoogle Scholar
  25. 25.
    Zeng DQ, Xu WJ, Ong WJ, Xu J, Ren H, Chen YZ, Zheng HF, Peng DL (2018) Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Appl Cata B: Environ 221:47–55.  https://doi.org/10.1016/j.apcatb.2017.08.041 CrossRefGoogle Scholar
  26. 26.
    Liu JN, Jia QH, Long JL, Wang XX, Gao ZW, Gu Q (2018) Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Appl Cata B: Environ 222:35–43.  https://doi.org/10.1016/j.apcatb.2017.09.073 CrossRefGoogle Scholar
  27. 27.
    Dai W, Pan XH, Chen SS, Chen C, Wen Z, Zhang HH, Ye ZZ (2014) Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance. J Mater Chem C 2:4606–4614.  https://doi.org/10.1039/C4TC00157E CrossRefGoogle Scholar
  28. 28.
    Zhang GG, Li GS, Wang XC (2015) Surface modification of carbon nitride polymers by core-Shell nickel/nickel oxide cocatalysts for hydrogen evolution photocatalysis. ChemCatChem 7:2864–2870.  https://doi.org/10.1002/cctc.201500069 CrossRefGoogle Scholar
  29. 29.
    Li Y, Tian JY, Yuan T, Wang P, Lu JS (2017) A sensitive photoelectrochemical aptasensor for oxytetracycline based on a signal “switch off-on” strategy. Sensors Actuators B Chem 240:785–792.  https://doi.org/10.1016/j.snb.2016.09.042 CrossRefGoogle Scholar
  30. 30.
    Wu ZZ (2019) AuNP tetramer-based aptasensor for SERS sensing of oxytetracycline. Food Anal Methods 12:1121–1127.  https://doi.org/10.1007/s12161-019-01453-3 CrossRefGoogle Scholar
  31. 31.
    Qian SH, Qiao LN, Xu WX, Jiang K, Wang YH, Lin HW (2018) An inner filter effect-based near-infrared probe for the ultrasensitive detection of tetracyclines and quinolones. Talanta 194:598–603.  https://doi.org/10.1016/j.talanta.2018.10.097 CrossRefPubMedGoogle Scholar
  32. 32.
    Abedalwafa MA, Li Y, Li D, Lv XJ, Wang L (2018) Fast-response and reusable oxytetracycline colorimetric strips based on nickel (II) ions immobilized carboxymethylcellulose/polyacrylonitrile nanofibrous membranes. Materials (Basel) 11(6):962.  https://doi.org/10.3390/ma11060962 CrossRefGoogle Scholar
  33. 33.
    Kim KS, Gu MB, Kang DH, Park JW, Song IH, Jung HS, Suh KY (2010) High-sensitivity detection of oxytetracycline using light scattering agglutination assay with aptasensor. Electrophoresis 31(18):3115–3120.  https://doi.org/10.1002/elps.201000217 CrossRefPubMedGoogle Scholar
  34. 34.
    Du JJ, Song Y, Xie SW, Feng YH, Jiang JB, Xu LJ (2018) Electrochemical biosensor based on hierarchical nanoporous composite electrode for detection of oxytetracycline. Nanosci Nanotech Lett 10:1095–1100.  https://doi.org/10.1166/nnl.2018.2709 CrossRefGoogle Scholar
  35. 35.
    Lin XP, Xing JC, Wang WD, Shan ZC, Xu FF, Huang FQ (2007) Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J Phys Chem C 111:18288–18293.  https://doi.org/10.1021/jp073955d CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiangChina
  2. 2.Jiangsu Key Laboratory for Environment Functional Materials, Jiangsu Key Laboratory of Intelligent Building Energy EfficiencySuzhou University of Science and TechnologySuzhouChina

Personalised recommendations