Advertisement

Microchimica Acta

, 186:773 | Cite as

A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials

  • Alireza Sanati
  • Mahsa Jalali
  • Keyvan Raeissi
  • Fathallah Karimzadeh
  • Mahshid Kharaziha
  • Sahar Sadat MahshidEmail author
  • Sara MahshidEmail author
Review Article
  • 108 Downloads

Abstract

This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes.

Graphical abstract

Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.

Keywords

Aptasensors Carbon nanotubes Catalytic biosensors DNA based biosensors Electrochemical biosensors Enzymes Graphene Immunosensors 

Abbreviations of various carbonaceous nanomaterials

3DCNSs

Three-dimensional carbon nanospheres

3DG

Three-dimensional graphene

3DGF

Three-dimensional graphene foam

3DNG

Three-dimensional nitrogen doped–graphene

3DrGO

Three-dimensional reduced graphene oxide

CQDs

Carbon quantum dots

CMWCNTs

Carboxylated multi-walled carbon nanotubes

CNFs

Carbon nanofibers

CNOs

Carbon nano-onions

CNTs

Carbon nanotubes

CNPs

Carbon nanoparticles

ERGO

Electrochemically reduced graphene oxide

GO

Graphene oxide

GQDs

Graphene quantum dots

Gr

Graphene

GrF

Graphene flakes

GMC

Graphitized mesoporous carbons

rGA

Reduced graphene oxide aerogel

rGO

Reduced graphene oxide

rGONRs

Reduced graphene oxide nanoribbons

MrGO

Magnetic reduced graphene oxide

MWCNTs

Multi-walled carbon nanotubes

NG

Nitrogen–doped graphene

NGQDs

Nitrogen–doped graphene quantum dots

NGNRs

Nitrogen–doped graphene nanoribbons

NSWCNTs

Nitrogen–doped single-walled carbon nanotubes

PCNRs

Porous carbon nanorods

PCNSs

Porous carbon nanospheres

Notes

Acknowledgements

The authors thank Faculty of Engineering at McGill University, Natural Science and Engineering Research Council of Canada (NSERC, G247765 and G248584) and Canada Foundation for Innovation (CFI, G248924) for financial support. M.J. is grateful for MEDA award by the Faculty of Engineering at McGill University. The authors acknowledge Nanotools-Microfab and the Facility for Electron Microscopy Research at McGill University and the research facilities of NanoQAM at the Université du Québec à Montréal.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Soleymani L, Li F (2017) Mechanistic challenges and advantages of biosensor miniaturization into the nanoscale. ACS Sensors 4:458–467CrossRefGoogle Scholar
  5. 5.
    Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8:1400–1458PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14CrossRefGoogle Scholar
  8. 8.
    Janegitz BC, Silva TA, Wong A, Ribovski L, Vicentini FC, Sotomayor MPT, Fatibello-Filho O (2016) The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens Bioelectron 89:224–233PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kerman K, Saito M, Yamamura S, Takamura Y, Tamiya E (2008) Nanomaterial-based electrochemical biosensors for medical applications. Trends Anal Chem 27:585–592CrossRefGoogle Scholar
  10. 10.
    Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212PubMedCrossRefGoogle Scholar
  11. 11.
    Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J (2016) Electrochemical biosensors and nanobiosensors. Essays Biochem 60:69–80PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hayat A, Marty JL (2014) Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors 14:10432–10453PubMedCrossRefGoogle Scholar
  13. 13.
    Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:1067–1076CrossRefGoogle Scholar
  14. 14.
    Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis. TrAC Trends Anal Chem 79:114–126CrossRefGoogle Scholar
  15. 15.
    Alizadeh Zeinabad H, Zarrabian A, Saboury AA, Alizadeh AM, Falahati M (2016) Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep 6:26508CrossRefGoogle Scholar
  16. 16.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRefGoogle Scholar
  17. 17.
    He L, Cui B, Liu J, Song Y, Wang M, Peng D, Zhang Z (2018) Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensors Actuators B 258:813–821CrossRefGoogle Scholar
  18. 18.
    Mondal K, Ali MA, Singh C, Sumana G, Malhotra BD, Sharma A (2017) Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sensors Actuators B 246:202–214CrossRefGoogle Scholar
  19. 19.
    Fu C, Yi D, Deng C, Wang X, Zhang W, Tang Y, Caruso F, Wang Y (2017) A partially graphitic mesoporous carbon membrane with three-dimensionally networked Nanotunnels for ultrasensitive electrochemical detection. Chem Mater 29:5286–5293CrossRefGoogle Scholar
  20. 20.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  21. 21.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  22. 22.
    Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends in Analytical Chem 25:480–489CrossRefGoogle Scholar
  23. 23.
    Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060CrossRefGoogle Scholar
  24. 24.
    Christopher B, Jacobs MJP, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662(662):105–127Google Scholar
  25. 25.
    Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1799PubMedCrossRefGoogle Scholar
  26. 26.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 5:353–389CrossRefGoogle Scholar
  27. 27.
    Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113PubMedCrossRefGoogle Scholar
  28. 28.
    Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291–307PubMedCrossRefGoogle Scholar
  29. 29.
    Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49CrossRefGoogle Scholar
  30. 30.
    Lawal AT (2018) Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 106:149–178PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhu C, Du D, Lin Y (2017) Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron 89:43–55CrossRefGoogle Scholar
  32. 32.
    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:41–50CrossRefGoogle Scholar
  33. 33.
    Beidaghi M, Wang C (2012) Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Funct Mater 22:4501–4510CrossRefGoogle Scholar
  34. 34.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, GrigorievaI V, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRefGoogle Scholar
  37. 37.
    Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CHA, Eng AYS, Bonanni A, Pumera M (2016) Graphene and its electrochemistry – an update. Chem Soc Rev 45:2371–2716CrossRefGoogle Scholar
  38. 38.
    Pumera M (2014) Heteroatom modified graphenes: electronic and electrochemical applications. J Mater Chem C 2:6454–6461CrossRefGoogle Scholar
  39. 39.
    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wang M, Duan X, Xu Y, Duan X (2016) Functional three-dimensional graphene/ polymer composites. ACS Nano 10:7231–7247PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wu S, Su F, Dong X, Ma C, Pang L, Peng D, Wang M, He L, Zhang Z (2017) Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide. Appl Surf Sci 401:262–270CrossRefGoogle Scholar
  42. 42.
    Nouri N, Khorram P, Sereshti H (2019) Applications of three-dimensional graphenes for preconcentration, extraction, and sorption of chemical species: a review. Microchim Acta 186:232CrossRefGoogle Scholar
  43. 43.
    Penmats V, Kim T, Beidaghi M, Kawarada H, Gu L, Wang Z, Wang C (2012) Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale 4:3673–3678CrossRefGoogle Scholar
  44. 44.
    Zhang P, Qiao Z, Dai S (2015) Recent advances in carbon Nanospheres: synthetic routes and applications. Chem Commun 51:9246–9256CrossRefGoogle Scholar
  45. 45.
    Zou G, Zhang D, Chao D, Li H, Xiong K, Fei L, Qian Y (2006) Carbon nanofibers: synthesis, characterization, and electrochemical properties. Carbon 44:828–832CrossRefGoogle Scholar
  46. 46.
    Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem 47:3696–3717CrossRefGoogle Scholar
  47. 47.
    Rogers KR (2000) Principles of affinity-based biosensors. Mol Biotechnol 14:109–110PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mahshid S, Li C, Mahshid SS, Askari M, Dolati A, Yang L, Luo S, Cai Q (2011) Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and au nanoparticles. Analyst 136:2322–2329CrossRefGoogle Scholar
  49. 49.
    Mahshid S, Mepham AH, Mahshid SS, BurgessI B, SaberiSafaei T, Sargent EH, Kelley SO (2016) Mechanistic control of the growth of three-dimensional gold sensors. J Phys Chem C 120:21123–21132CrossRefGoogle Scholar
  50. 50.
    Mahshid SS, Mahshid S, Dolati A, Ghorbani M, Yang L, Luo S, Cai Q (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555CrossRefGoogle Scholar
  51. 51.
    Llobregat AA, Jeerapan I, Bandodkar A, Vidal L, Canals A, Wang J, Morallón E (2017) A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens Bioelectron 91:885–891CrossRefGoogle Scholar
  52. 52.
    Madhurantakam S, Babu KJ, Bosco J, Rayappana B, Krishnan UM (2017) Fabrication of mediator-free hybrid nano-interfaced electrochemical biosensor for monitoring cancer cell proliferation. Biosens Bioelectron 87:832–841PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Osikoya AO, Parlak O, Murugan NA, Dikio ED, Moloto H, Uzun L, Turner APF, Tiwari A (2017) Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing. Biosens Bioelectron 89:496–504PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Du X, Jiang D, Chen S, Dai L, Zhou L, Hao N, You T, Mao H, Wang K (2017) CeO2 nanocrystallinee esensemble-on-nitrogen-doped graphene nanocomposites: one-pot,rapid synthesis and excellent electrocatalytic activity for enzymatic biosensing. Biosens Bioelectron 89:681–688PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Halder A, Zhang M, Chi Q (2017) Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens Bioelectron 87:764–771PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chauhan N, Chawla S, Pundir CS, Jain U (2017) An electrochemical sensor for detection of neurotransmitter acetylcholineusing metal nanoparticles, 2D material and conducting polymer modified electrode. Biosens Bioelectron 89:377–383PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Reza KK, Ali MA, Singh MK, Agrawal VV, Biradar AM (2017) Amperometric enzymatic determination of bisphenol a using an ITO electrode modified with reduced graphene oxide and Mn3O4 nanoparticles in a chitosan matrix. Microchim Acta 184:1809–1816CrossRefGoogle Scholar
  58. 58.
    Xu S, Zhang Y, Dong K, Wen J, Zheng C, Zhao S (2017) Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of Escherichia Coli O157:H7. Int J Electrochem Sci 12:3443–3458CrossRefGoogle Scholar
  59. 59.
    Cai Z, Xiong H, Zhu Z, Huang H, Lia L, Huang Y, Yu X (2017) Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications. Synth Met 227:100–105CrossRefGoogle Scholar
  60. 60.
    Liu Y, Liu X, Guo Z, Hu Z, Xue Z, Lu X (2017) Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide inliving cells sensitively. Biosens Bioelectron 87:101–107PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mercante LA, Facurea MHM, Sanfelice RC, Migliorini FL, Mattoso LHC, Correa DS (2017) One-pot preparation of PEDOT:PSS-reduced graphene decorated with au nanoparticles for enzymatic electrochemical sensing of H2O2. Appl Surf Sci 407:162–170CrossRefGoogle Scholar
  62. 62.
    Liu S, Wang Y, Xu W, Leng X, Wang H, Guo Y, Huang J (2017) A novel sandwich-type electrochemical aptasensor based on GR-3DAu and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens Bioelectron 88:181–187PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yang Z, Lan Q, Li J, Wu J, Tang Y, Hu X (2017) Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensor. Biosens Bioelectron 89:312–318PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, Machado SAS, Pingarrón JM, Villalong R (2017) Decoration of reduced graphen eoxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensorfor 17β-estradiol. Biosens Bioelectron 89:343–351PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Tığ GA (2017) Highly sensitive amperometric biosensor for determination of NADH and ethanol based on au-ag nanoparticles/poly(L-cysteine)/reduced graphene oxide nanocomposite. Talanta 175:382–389CrossRefGoogle Scholar
  66. 66.
    Mani V, Govindasamy M, Chen SM, Chen TW, Kumar AS, Huang ST (2017) Core-shell heterostructured multiwalled carbon nanotubes@ reduced graphene oxide nanoribbons/chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and nitrite. Sci Rep 7:11910PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mazaheri M, Simchi A, Aashuri H (2018) Enzymatic biosensing by covalent conjugation of enzymes to 3D-networks of graphene nanosheets on arrays of vertically aligned gold nanorods: application to voltammetric glucose sensing. Microchim Acta 185:178CrossRefGoogle Scholar
  68. 68.
    Mohapatra J, Ananthoju B, Nair V, Mitra AD, Bahadur D, Medhekar NV, Aslam M (2018) Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl Surf Sci 442:332–341CrossRefGoogle Scholar
  69. 69.
    Boussema F, Gross AJ, Hmida F, Ayed B, Majdoub H, Cosnier S, Maaref A, Holzinger M (2018) Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens Bioelectron 109:20–26PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ran P, Song J, Mo F, Wu J, Liu P, Fu Y (2019) Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher. Microchim Acta 186:276CrossRefGoogle Scholar
  71. 71.
    Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32CrossRefGoogle Scholar
  72. 72.
    Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT (2017) Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on invivo carbon fiber electrodes. Biosens Bioelectron 89:400–410PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Zhang D, Li L, Ma W, Chen X, Zhang Y (2017) Electrodeposited reduced graphene oxide incorporating polymerization of L-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng C 70:241–249CrossRefGoogle Scholar
  75. 75.
    Wang H, Zhang S, Li S, Qu J (2018) Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta:188–194Google Scholar
  76. 76.
    Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainov I (2017) Graphene-ceramic hybrid nanofibers for ultrasensitive electrochemical determination of ascorbic acid. Microchim Acta:897–905CrossRefGoogle Scholar
  77. 77.
    Asif M, Aziz A, Wang H, Wang Z, Wang W, Ajmal M, Xiao F, Chen X, Liu H (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim Acta 186:61CrossRefGoogle Scholar
  78. 78.
    Zhao Y, Qin J, Xu X, Gao S, Jiang T, Zhang S, Jin J (2019) Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Microchim Acta 186:17CrossRefGoogle Scholar
  79. 79.
    Kokulnathan T, Raja N, Chen SM, Liao WC (2017) Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes. J Colloid Interface Sci 501:77–85CrossRefGoogle Scholar
  80. 80.
    Pandian K, Soundari DM, Showdri PR, Kalaiyarasi J, Gopinath SCB (2019) Voltammetric determination of caffeic acid by using a glassy carbon electrode modified with a chitosan-protected nanohybrid composed of carbon black and reduced graphene oxide. Microchim Acta 186:54CrossRefGoogle Scholar
  81. 81.
    Cincottob FH, Golinellia DLC, Machado SAS, Moraes FC (2017) Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sensors Actuators B 239:488–493CrossRefGoogle Scholar
  82. 82.
    Ejaz A, Joo Y, Jeon S (2017) Fabrication of 1,4-bis(aminomethyl)benzene and cobalt hydroxide @graphene oxide for selective detection of dopamine in the presence ofascorbic acid and serotonin. Sensors Actuators B 240:297–307CrossRefGoogle Scholar
  83. 83.
    Baccarina M, Santos FA, Vicentini FC, Zucolotto V, Janegitz BC, Fatibello-Filho O (2017) Electrochemical sensor based on reduced graphene oxide/carbon black/ chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J Electroanal Chem 799:436–443CrossRefGoogle Scholar
  84. 84.
    Xie LQ, Zhang YH, Gao F, Wua QA, Xu PY, Wang SS, Gao NN, Wang QX (2017) A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite. Chin Chem Lett 28:41–48CrossRefGoogle Scholar
  85. 85.
    Kahlouche K, Jijie R, HosuI I, Barras A, G T, Yahiaoui R, Herlem G, Ferhat M, Szunerits S, Boukherroub R (2018) Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta:432–440Google Scholar
  86. 86.
    Xin Huang X, Weishan Shi W, Bao N, Yu C, Gu H (2019) Electrochemically reduced graphene oxide and gold nanoparticles on an indium tin oxide electrode for voltammetric sensing of dopamine. Microchim Acta 186:310CrossRefGoogle Scholar
  87. 87.
    Zhao P, Chen C, Ni M, Peng L, Li C, Xie Y, Fei J (2019) Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide. Microchim Acta 186:134CrossRefGoogle Scholar
  88. 88.
    Ensafi AA, Noroozi R, Zandi Atashbar N, Rezaei B (2017) Cerium(IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sensors Actuators B 245:980–987CrossRefGoogle Scholar
  89. 89.
    Samuei S, Fakkar J, Rezvani Z, Shomali A, Habibi B (2017) Synthesis and characterization of graphene quantum dots/CoNiAl layered double-hydroxide nanocomposite: application as a glucose sensor. Anal Biochem 521:31–39PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Huang W, Ding S, Chen Y, Hao W, Lai X, Peng J, Tu J, Cao Y, Li X (2017) 3D NiO hollow sphere/reduced graphene oxide composite for high performance glucose biosensor. Sci Rep 7(1):5220PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang L, Zhang Y, Yu J, He J, Yang H, Ye Y, Song Y (2017) A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sensors Actuators B 239:172–179CrossRefGoogle Scholar
  92. 92.
    Liu Q, Jiang Z, Tang Y, Yang X, Wei M, Zhang M (2018) A facile synthesis of a 3D high-index au NCs@CuO supported on reduced graphene oxide for glucose sensing. Sensors Actuators B 255:454–462CrossRefGoogle Scholar
  93. 93.
    Gowthaman NSK, Raj MA, John SA (2017) Nitrogen-doped graphene as a robust scaffold for the homogenous deposition of copper nanostructures: a non-enzymatic disposable glucose sensor. ACS Sustainable Chemistry and Engineering 5:1648–1658CrossRefGoogle Scholar
  94. 94.
    Qian Q, Hub Q, Li L, Shi P, Zhou J, Kong J, Zhang X, Sun G, Huang W (2018) Sensitive fiber microelectrode made of nickel hydroxide nanosheetsembedded in highly-aligned carbon nanotube scaffold fornonenzymatic glucose determination. Sensors Actuators B 257:23–28CrossRefGoogle Scholar
  95. 95.
    Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P (2017) Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor. Sensors Actuators B 246:854–863CrossRefGoogle Scholar
  96. 96.
    Darvishi S, Souissi M, Karimzadeh F, Kharaziha M, Sahara R, Ahadian S (2017) Ni nanoparticle-decorated reduced graphene oxide for non-enzymatic glucose sensing: an experimental and modeling study. Electrochim Acta 240:388–398CrossRefGoogle Scholar
  97. 97.
    Darvishi S, Souissi M, Kharaziha M, Karimzadeh F (2018) Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: an experimental and modeling study. Electrochemica Acta 261:275–283CrossRefGoogle Scholar
  98. 98.
    Batool R, Akhtar MS, Hayat A, Han D, Niu L, Ahmad MA, Nawaz MH (2019) A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Microchim Acta 186:267CrossRefGoogle Scholar
  99. 99.
    Zhang S, Zhuang X, Chen D, Luan F, He T, Tian C, Chen L (2019) Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane. Microchim Acta 186:450CrossRefGoogle Scholar
  100. 100.
    Chen D, Zhuang X, Zhai J, Zheng Y, Lu H, Chen L (2018) Preparation of highly sensitive Pt nanoparticles-carbon quantumdots/ionic liquid functionalized graphene oxide nanocomposites andapplication for H2O2 detection. Sensors Actuators B 255:1500–1506CrossRefGoogle Scholar
  101. 101.
    Xue Y, Maduraiveeran G, Wang M, Zheng S, Zhang Y, Jina W (2018) Hierarchical oxygen-implanted MoS2 nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media. Talanta 176:397–405PubMedCrossRefGoogle Scholar
  102. 102.
    Bozkurt S, Tosun B, Sen B, Akocak S, Savk A, Ebeoglugil MF, Sen F (2017) A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal Chim Acta 989:88–94PubMedCrossRefGoogle Scholar
  103. 103.
    Yuanling Sun YW, Li J, Ding C, Lin Y, Sun W, Luo C (2017) An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta 174:809–818PubMedCrossRefGoogle Scholar
  104. 104.
    Asadian E, Shahrokhian S, Iraji Zad A, Ghorbani-Bidkorbeh F (2017) Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate. Sensors Actuators B 239:617–627CrossRefGoogle Scholar
  105. 105.
    Zhang Z, Yao Y, Xu J, Wen Y, Zhang J, Ding W (2017) Nanohybrid sensor based on carboxyl functionalized graphene dispersed palygorskite for voltammetric determination of niclosamide. Appl Clay Sci 143:57–66CrossRefGoogle Scholar
  106. 106.
    Zou C, Yang B, Bin D, Wang J, Li S, Yang P, Wang C, Shiraishi Y, Du Y (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci 488:135–141PubMedCrossRefGoogle Scholar
  107. 107.
    Ma X, Gao F, Liu G, Xie Y, Tu X, Li Y, Dai R, Qu F, Wang W, Lu L (2019) Sensitive determination of nitrite by using an electrode modified with hierarchical three-dimensional tungsten disulfide and reduced graphene oxide aerogel. Microchim Acta 186:291CrossRefGoogle Scholar
  108. 108.
    Borazjani M, Mehdinia A, Ziaei E, Jabbari A, Maddah M (2017) Enantioselective electrochemical sensor for R-mandelic acid based on a glassy carbon electrode modified with multi-layers of biotin-loaded overoxidized polypyrrole and nanosheets of reduced graphene oxide. Microchim Acta 184:611–620CrossRefGoogle Scholar
  109. 109.
    Yang B, Bin D, Zhang K, Dua Y, Majim T (2018) A seed-mediated method to design N-doped graphene supported goldsilver nanothorns sensor for rutin detection. J Colloid Interface Sci 512:446–454PubMedCrossRefGoogle Scholar
  110. 110.
    Kesavan S, Kumar DR, Lee YR, Shima JJ (2017) Determination of tetracycline in the presence of major interference inhuman urine samples using polymelamine/electrochemically reducedgraphene oxide modified electrode. Sensors Actuators B 241:455–465CrossRefGoogle Scholar
  111. 111.
    Zhuang X, Chen D, Wang S, Liu H, Chen L (2017) Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for electrochemical theophylline biosensing. Sensors Actuators B 251:185–191CrossRefGoogle Scholar
  112. 112.
    Bagheri H, Pajooheshpour N, Jamali B, Amidi S, Hajian A, Khoshsafar H (2017) A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4-SnO2-gr ternary nanocomposite. Microchem J 131:120–129CrossRefGoogle Scholar
  113. 113.
    Huang H, Yue Y, Chen Z, Chen Y, Wu S, Liao J, Liu S, Wen H (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189CrossRefGoogle Scholar
  114. 114.
    Sha R, Komori K, Badhulika S (2017) Graphene–polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochim Acta 233:44–51CrossRefGoogle Scholar
  115. 115.
    Kumar THV, Sundramoorthy AK (2018) Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc 165:B3006–B3016CrossRefGoogle Scholar
  116. 116.
    Zhao Y, Zhou J, Jia Z, Huo D, Liu Q, Zhong D, Hu Y, Yang M, Bian M, Hou C (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92CrossRefGoogle Scholar
  117. 117.
    Moscovici M, Bhimji A, Kelley SO (2013) Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array. Lab Chip 13:940–946PubMedCrossRefGoogle Scholar
  118. 118.
    Mahshid SS, Camire S, Ricci F, Vallee-Belisle A (2015) A highly selective electrochemical DNA-based sensor that employs steric hindrance effects to detect proteins directly in whole blood. J Am Chem Soc 137:15596–15599PubMedCrossRefGoogle Scholar
  119. 119.
    Mahshid SS, Ricci F, Kelley SO, Vallee-Belisle A (2017) Electrochemical DNA-based immunoassay that employs steric hindrance to detect small molecules directly in whole blood. ACS sensors 2:718–723PubMedCrossRefGoogle Scholar
  120. 120.
    Jalali M, Abdel Fatah T, Mahshid SS, Labib M, Perumal AS, Sara Mahshid S (2018) A hierarchical 3D nanostructured microfluidic device for sensitive detection of pathogenic Bacteria. Small 14:1801893CrossRefGoogle Scholar
  121. 121.
    Mahshid S, Lu J, Abidi AA, Sladek R, Reisner WW, Ahamed MJ (2018) Transverse dielectrophoretic-based DNA nanoscale confinement. Sci Rep 8:5981PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ahamed MJ, Mahshid S, Berard DJ, Michaud F, Sladek R, Reisner WW, Leslie SR (2016) Continuous confinement fluidics: getting lots of molecules into small spaces with high Fidelity. Macromolecules 49:2853–2859CrossRefGoogle Scholar
  123. 123.
    Bahadir EB, Sezgintürk MK (2014) A review on impedimetric biosensors. Artificial Cells 44(1):248–262Google Scholar
  124. 124.
    Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical Immunosensors for detection of Cancer protein biomarkers. ACS Nano 6:6546–6561PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Lech G, Słotwiński R, Słodkowski M, Krasnodębski IW (2016) Colorectal cancer tumour markers and biomarkers: recent therapeutic advances. World J Gastroenterol 22:1745–1755PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Anal Chim Acta 561:55–61CrossRefGoogle Scholar
  127. 127.
    Tao Z, Du J, Cheng Y, Li Q (2018) Electrochemical immune analysis system for gastric Cancer biomarker carcinoembryonic antigen (CEA)detection. Int J Electrochem Sci 13:1413–1422CrossRefGoogle Scholar
  128. 128.
    Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826PubMedCrossRefGoogle Scholar
  129. 129.
    Wang B, Wua Y, Chen Y, Weng B, Li C (2017) Flexible paper sensor fabricated via in situ growth of cu nanofloweron RGO sheets towards amperometrically non-enzymatic detection of glucose. Sensors Actuators B 238:802–808CrossRefGoogle Scholar
  130. 130.
    Wang Y, Zhang Y, Wu D, Ma H, Pang X, Fan D, Wei Q, Du B (2017) Ultrasensitive label-free electrochemical Immunosensor based on multifunctionalized graphene nanocomposites for the detection of alpha fetoprotein. Sci Rep 7:42361PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Khoshroo A, Mazloum-Ardakani M, Forat-Yazdi M (2018) Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensors Actuators B 255:580–587CrossRefGoogle Scholar
  132. 132.
    Wang Y, Wang Y, Wu D, Ma H, Zhang Y, Fan D, Pang X, Du B, Wei Q (2018) Label-free electrochemical immunosensor based on flower-like ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sensors Actuators B 255:125–132CrossRefGoogle Scholar
  133. 133.
    Miao L, Jiao L, Zhang J, Li H (2017) Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchim Acta 184:169–175CrossRefGoogle Scholar
  134. 134.
    Tang Z, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C (2018) A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe MOFs@AuNPs nanocomposites and a novel AuPt methylene blue nanorod. Biosens Bioelectron 101:253–259PubMedCrossRefGoogle Scholar
  135. 135.
    Valipour A, Roushani M (2017) Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: electrochemical oxidation of riboflavin was used as redox probe. Biosens Bioelectron 89:946–951PubMedCrossRefGoogle Scholar
  136. 136.
    Singh R, Hong S, Jang J (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical Immunosensor integrated with a microfluidic platform. Sci Rep 7:42771PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Yang Y, Yan Q, Liu Q, Li Y, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y (2018) An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped au@ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens Bioelectron 99:450–457PubMedCrossRefGoogle Scholar
  138. 138.
    Malekzad H, Hasanzadeh M, Shadjou N, Jouyban A (2017) Highly sensitive label-free immunosensing of prostate specific antigen using poly cysteine caped by graphene quantum and gold nanoparticle: a novel signal amplification strategy. Int J Biol Macromol 105:522–532PubMedCrossRefGoogle Scholar
  139. 139.
    Assari P, Rafati AA, Feizollahi A, Asadpour Joghani R (2019) An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Microchim Acta 186:484CrossRefGoogle Scholar
  140. 140.
    Rezaei B, Mousavi Shoushtari A, Rabiee M, Uzun L, Mak WC, Turner APF (2018) An electrochemical immunosensor for cardiac troponin I using electrospun carboxylated multiwalled carbon nanotube -whiskered nanofibres. Talanta 182:178–186PubMedCrossRefGoogle Scholar
  141. 141.
    Lv H, Zhang X, Li Y, Ren Y, Zhang C, Wang P, Xu Z, Li X, Chen Z, Dong Y (2019) An electrochemical sandwich immunosensor for cardiac troponin I by using nitrogen/sulfur co-doped graphene oxide modified with au@ag nanocubes as amplifiers. Microchim Acta 186:416CrossRefGoogle Scholar
  142. 142.
    Amani J, Khoshroo A, Rahimi-Nasrabadi M (2018) Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol. Microchim Acta 185:79CrossRefGoogle Scholar
  143. 143.
    Zeng Y, Bao J, Zhao Y, Huo D, Chen M, Yang M, Fa H, Hou C (2018) A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21-1 based on 3D graphene with gold nanopaticle modified electrode. Talanta 178:122–128PubMedCrossRefGoogle Scholar
  144. 144.
    Shahrokhian S, Salimian R (2018) Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: application toward BRCA1 sensing. Sensors Actuators B 266:160–169CrossRefGoogle Scholar
  145. 145.
    Wang R, Feng JJ, Xue Y, Wu L, Wang AJ (2018) A label-free electrochemical immunosensor based on AgPt nanorings supported on reduced graphene oxide for ultrasensitive analysis of tumor marker. Sensors Actuators B 254:1174–1181CrossRefGoogle Scholar
  146. 146.
    Liu B, Lu L (2019) Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon. Microchim Acta 186:262CrossRefGoogle Scholar
  147. 147.
    Zhang H, Ke H, Wang Y, Li P, Huang C, Jia N (2019) 3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells. Microchim Acta 186:39CrossRefGoogle Scholar
  148. 148.
    Bader D, Riskin A, Vafsi O, Tamir A, Peskin B, Israel N, Merksamer R, Dar H, David M (2004) Alpha-fetoprotein in the early neonatal period—a large study and review of the literature. Clin Chim Acta 349:15–23PubMedCrossRefGoogle Scholar
  149. 149.
    Wang H, Zhang Y, Wang Y, Ma H, Du B, Wei Q (2017) Facile synthesis of cuprous oxide nanowires decorated graphene oxide nanosheets nanocomposites and its application in label-free electrochemical immunosensor. Biosens Bioelectron 87:745–751PubMedCrossRefGoogle Scholar
  150. 150.
    Wei Y, Li X, Sun X, Ma H, Zhang Y, Wei Q (2017) Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on au-CoS/graphene and CeO2/ionic liquids doped with carboxymethyl chitosan complex. Biosens Bioelectron 94:141–147PubMedCrossRefGoogle Scholar
  151. 151.
    Chen M, Hou C, Huo D, Fa H, Zhao Y, Shen C (2017) A sensitive electrochemical DNA biosensor based on three-dimensional nitrogen-doped graphene and Fe3O4 nanoparticles. Sensors Actuators B 239:421–429CrossRefGoogle Scholar
  152. 152.
    He B (2017) Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Microchim Acta 184:229–235CrossRefGoogle Scholar
  153. 153.
    Mahshid SS, Vallee-Belisle A, Kelley SO (2017) Biomolecular steric hindrance effects are enhanced on nanostructured microelectrodes. Anal Chem 89(18):9751–9757PubMedCrossRefGoogle Scholar
  154. 154.
    Zhou W, Mahshid SS, Wang W, Vallee-Belisle A, Zandstra PW, Sargent EH (2017) Steric hindrance assay for secreted factors in stem cell culture. ACS sensors 2:495–500PubMedCrossRefGoogle Scholar
  155. 155.
    Soleymani L, Fang Z, Kelley SO, Sargent EH (2009) Integrated nanostructures for direct detection of DNA at attomolar concentrations. Appl Phys Lett 95:143701CrossRefGoogle Scholar
  156. 156.
    Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res 27:4830–4837PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Mahshid SS, Mahshid S, Vallée-Bélisle A, Kelley SO (2019) Peptide-mediated electrochemical steric hindrance assay for one-step detection of HIV antibodies. Anal Chem 91:4943–4947PubMedCrossRefGoogle Scholar
  158. 158.
    Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199PubMedCrossRefGoogle Scholar
  159. 159.
    Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139PubMedCrossRefGoogle Scholar
  160. 160.
    Wang W, Bao T, Zeng X, Xiong H, Wen W, Zhang X, Wang S (2017) Ultrasensitive electrochemical DNA biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling. Biosens Bioelectron 91:183–189PubMedCrossRefGoogle Scholar
  161. 161.
    Gao N, Gao F, He S, Zhu Q, Huang J, Tanaka H, Wang Q (2017) Graphene oxide directed in-situ deposition of electroactive silver nanoparticles and its electrochemical sensing application for DNA analysis. Anal Chim Acta 951:58–67PubMedCrossRefGoogle Scholar
  162. 162.
    Ye Y, Xie J, Ye Y, Cao X, Zheng H, Xu X, Zhang Q (2018) A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon 129:730–737CrossRefGoogle Scholar
  163. 163.
    Ariksoysala DO, Kayran YU, Yilmaz FF, Ciucu AA, David IG, David V, Limoncu MH, Ozsoz M (2017) DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples. Talanta 166:27–35CrossRefGoogle Scholar
  164. 164.
    Ahour F, Shamsi A (2017) Electrochemical label-free and sensitive nanobiosensing of DNA hybridization by graphene oxide modified pencil graphite electrode. Anal Biochem 532:64–71PubMedCrossRefGoogle Scholar
  165. 165.
    Chen Y, Li Y, Yang Y, Wu F, Cao J, Bai L (2017) A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for mycobacterium tuberculosis. Microchim Acta 184:1801–1808CrossRefGoogle Scholar
  166. 166.
    Mogha NK, Sahu V, Sharma RK, Masram DT (2018) Reduced graphene oxide nanoribbon immobilized gold nanoparticles based electrochemical DNA biosensor for detection of mycobacterium tuberculosis. J Mater Chem B 6:5181–5187CrossRefGoogle Scholar
  167. 167.
    Chen M, Wang Y, Su H, Mao L, Jiang X, Zhang T, Dai X (2018) Three-dimensional electrochemical DNA biosensor based on 3D graphene-ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sensors Actuators B Chem 255:2910–2918CrossRefGoogle Scholar
  168. 168.
    Hongxia C, Zaijun L, Ruiyi L, Guangli W, Zhiguo G (2019) Molecular machine and gold/graphene quantum dot hybrid based dual amplification strategy for voltammetric detection of VEGF165. Microchim Acta 186:242CrossRefGoogle Scholar
  169. 169.
    Liu YL, Da HM, Chai YQ, Yuan R, Liu HY (2019) Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-C3N4 via porous carbon spheres. Microchim Acta 186:275CrossRefGoogle Scholar
  170. 170.
    Bharti A, Agnihotri N, Prabhakar N (2019) A voltammetric hybridization assay for microRNA-21 using carboxylated graphene oxide decorated with gold-platinum bimetallic nanoparticles. Microchim Acta 186:185CrossRefGoogle Scholar
  171. 171.
    Wang J, Zhang L, Lu L, Kang T (2019) Molecular beacon immobilized on graphene oxide for enzyme-free signal amplification in electrochemiluminescent determination of microRNA. Microchim Acta 186:142CrossRefGoogle Scholar
  172. 172.
    Li M, Xu X, Cai Q, Luo X, Zhou Z, Xu G, Xie Y (2019) Graphene oxide-based fluorometric determination of microRNA-141 using rolling circle amplification and exonuclease III-aided recycling amplification. Microchim Acta 186:531CrossRefGoogle Scholar
  173. 173.
    Wang F, Chu Y, Ai Y, Chen L, Gao F (2019) Graphene oxide with in-situ grown Prussian blue as an electrochemical probe for microRNA-122. Microchim Acta 186:116CrossRefGoogle Scholar
  174. 174.
    Gong Q, Wang YD, Yang H (2017) A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens Bioelectron 15:565–569CrossRefGoogle Scholar
  175. 175.
    Lautner G, Gyurcsányi RE (2014) Electrochemical detection of miRNAs. Electroanalysis 26:1224–1235CrossRefGoogle Scholar
  176. 176.
    Toh SY, Citartan M, Gopinath SCB, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosensors andBioelectronics 64:392–403CrossRefGoogle Scholar
  177. 177.
    Hianik T, Wang J (2009) Electrochemical Aptasensors – recent achievements and perspectives. Electroanalysis 21:1223–1235CrossRefGoogle Scholar
  178. 178.
    Zhang Z, Guo C, Zhang S, He L, Wang M, Peng D, Tian J, Fang S (2017) Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Biosens Bioelectron 89:735–742CrossRefGoogle Scholar
  179. 179.
    Yin J, Guo W, Qin X, Zhao J, Pei M, Ding F (2017) A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplificationJunling. Sensors Actuators B 241:151–159CrossRefGoogle Scholar
  180. 180.
    Su Z, Xu X, Xu H, Zhang Y, Li C, Ma Y, Song D, Xie Q (2017) Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer. Microchim Acta 184:1677–1682CrossRefGoogle Scholar
  181. 181.
    Li J, Gao T, Gu S, Zhi J, Yang J, Li G (2017) An electrochemical biosensor for the assay of alpha-fetoprotein-L3 with practical applications. Biosens Bioelectron 87:352–357PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Ranjbar S, Shahrokhian S (2018) Design and fabrication of an electrochemical aptasensor using au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry 123:70–76PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Huang Y, Tan J, Cui L, Zhou Z, Zhou S, Zhang Z, Zheng R, Xue Y, Zhang M, Li S, Zhu N, Liang J, Li G, Zhong L, Zhao Y (2018) Graphene and au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosens Bioelectron 1:560–567CrossRefGoogle Scholar
  184. 184.
    Li Z, Yin J, Gao C, Sheng L, Meng A (2019) A glassy carbon electrode modified with graphene oxide, poly(3,4-ethylenedioxythiophene), an antifouling peptide and an aptamer for ultrasensitive detection of adenosine triphosphate. Microchim Acta 186:90CrossRefGoogle Scholar
  185. 185.
    Saremi M, Amini A, Heydari H (2019) An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene. Microchim Acta 186:254CrossRefGoogle Scholar
  186. 186.
    Forootan Rostamabadi P, Heydari-Bafrooei E (2019) Impedimetric aptasensing of the breast cancer biomarker HER2 usin a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchim Acta 186:495CrossRefGoogle Scholar
  187. 187.
    Jiang B, Chen J, Yuan W, Ji J, Liu Z, Wu L, Tang Q, Shu X (2018) Platelet-derived growth factor-D promotes colorectal cancer cell migration, invasion and proliferation by regulating Notch1 and matrix metalloproteinase-9. Oncol Lett 15:1573–1579PubMedPubMedCentralGoogle Scholar
  188. 188.
    Wang Z, Kong D, Banerjee S, Li Y, Adsay NV, Abbruzzese J, Sarkar FH (2007) Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling. Cancer Res 67:11377–11385PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Bandodkar AJ, Jia W, Yardımcı C, Wang X, Ramirez J, Wang J (2015) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87:394–398PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A, Cinti S, P P, Mercier PP, Wang J (2016) Noninvasive alcohol monitoring using a wearable tattoo-based Iontophoretic-biosensing system. ACS Sensors 1:1011–1019CrossRefGoogle Scholar
  191. 191.
    Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Windmiller JR, Wang J (2013) Wearable electrochemical sensors and biosensors: a. Electroanalysis 25:29–46CrossRefGoogle Scholar
  193. 193.
    Chaiyo S, Mehmeti E, Siangproh W, Hoange TL, Nguyene HP, Chailapakul O, Kalcher K (2018) Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite. Biosens Bioelectron 102:113–120PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Mishra RK, Hubble LJ, Martín A, Kumar R, Barfidokht A, Kim J, Musameh MM, Kyratzis IL, Wang J (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors 2:553–561PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Sempionatto JR, Mishra RK, Martín A, Tang G, Nakagawa T, Lu X, Campbell AS, Lyu KM, Wang J (2017) Wearable ring-based sensing platform for detecting chemical threats. ACS Sensors 2:1531–1538PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Sempionatto JR, Nakagawa T, Pavinatto A, Mensah ST, Imani S, Mercier P, Wang J (2017) Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17:1834–1842PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Boonkaew S, Chaiyo S, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O (2019) An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Microchim Acta 186:153CrossRefGoogle Scholar
  198. 198.
    Moazeni M, Karimzadeh F, Kermanpur A (2018) Peptide modified paper based impedimetric immunoassay with nanocomposite electrodes as a point-of-care testing of alpha-fetoprotein in human serum. Biosens Bioelectron 117:748–757PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Clark LC, Lyons JC (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Automated and Semi-Automated Systems in Clinical Chemistry 102:29–45Google Scholar
  200. 200.
    Sinha A, Dhanjai JR, Zhao H, Karolia P, Jadon N (2018) Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Microchim Acta 185:89CrossRefGoogle Scholar
  201. 201.
    Hossain MF, Park JY (2017) Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode. PLoS One 212(3):e0173553CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of BioengineeringMcGill UniversityMontrealCanada
  3. 3.Sunnybrook Research InstituteSunnybrook HospitalTorontoCanada

Personalised recommendations