Advertisement

Microchimica Acta

, 186:728 | Cite as

Fluorometric determination of aflatoxin B1 using a labeled aptamer and gold nanoparticles modified with a complementary sequence acting as a quencher

  • Chao Wang
  • Yapiao Li
  • Ce Zhou
  • Qiang ZhaoEmail author
Original Paper

Abstract

A fluorometric aptamer based assay is described for rapid and sensitive detection of aflatoxin B1 (AFB1). It is making use of a fluorescein (FAM) labeled anti-AFB1 aptamer and complementary DNA-modified gold nanoparticles (GNPs). In the absence of AFB1, the FAM-labeled aptamers hybridize with complementary DNA strands that were covalently immobilized on GNPs. This results in quenching of the green fluorescence (with excitation/emission peaks at 485/525 nm). In the presence of AFB1, the aptamer probe binds AFB1 and is released from the GNPs. Hence, fluorescence is restored. Under optimized conditions, AFB1 in the concentration range from 61 pM to 4.0 μM can be detected, and the detection limit is 61 pM. This assay is highly selective for AFB1. It was applied to the determination of AFB1 spiked into 50-fold diluted wine and 20-fold diluted beer.

Graphical abstract

Schematic presentation of fluorometric detection of AFB1 using a fluorescein (FAM) labeled anti-AFB1 aptamer and complementary DNA-modified gold nanoparticles (GNPs).

Keywords

Fluorescent probe Mycotoxin Food safety Envrionmental analysis Fluorophore Nanomaterials Fluorescence quenching Nanoprobe 

Notes

Acknowledgements

We thanked the support from National Natural Science Foundation of China (Grant No. 21575153, 21435008, 21874146) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14030200).

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3838_MOESM1_ESM.doc (736 kb)
ESM 1 (DOC 736 kb)

References

  1. 1.
    Carnaghan RB, Hartley RD, O'Kelly J (1963) Toxicity and fluorescence properties of the aflatoxins. Nature 200(4911):1101.  https://doi.org/10.1038/2001101a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32.  https://doi.org/10.1038/nrmicro2916 CrossRefPubMedGoogle Scholar
  3. 3.
    Bruix J, Boix L, Sala M, Llovet JM (2004) Focus on hepatocellular carcinoma. Cancer Cell 5(3):215–219.  https://doi.org/10.1016/S1535-6108(04)00058-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Edite Bezerra da Rocha M, Freire FCO, Erlan Feitosa Maia F, Izabel Florindo Guedes M, Rondina D (2014) Mycotoxins and their effects on human and animal health. Food Control 36(1):159–165.  https://doi.org/10.1016/j.foodcont.2013.08.021 CrossRefGoogle Scholar
  5. 5.
    Ostry V, Malir F, Toman J, Grosse Y (2017) Mycotoxins as human carcinogens-the IARC monographs classification. Mycotoxin Res 33(1):65–73.  https://doi.org/10.1007/s12550-016-0265-7 CrossRefGoogle Scholar
  6. 6.
    Bhat R, Rai RV, Karim AA (2010) Mycotoxins in food and feed: present status and future concerns. Compr Rev Food Sci Food Saf 9(1):57–81.  https://doi.org/10.1111/j.1541-4337.2009.00094.x CrossRefGoogle Scholar
  7. 7.
    Turner NW, Subrahmanyam S, Piletsky SA (2009) Analytical methods for determination of mycotoxins: a review. Anal Chim Acta 632(2):168–180.  https://doi.org/10.1016/j.aca.2008.11.010 CrossRefPubMedGoogle Scholar
  8. 8.
    Yao H, Hruska Z, Di Mavungu JD (2015) Developments in detection and determination of aflatoxins. World Mycotoxin J 8(2):181–191.  https://doi.org/10.3920/WMJ2014.1797 CrossRefGoogle Scholar
  9. 9.
    Li P, Zhang Q, Zhang W (2009) Immunoassays for aflatoxins. Trends Anal Chem 28(9):1115–1126.  https://doi.org/10.1016/j.trac.2009.07.003 CrossRefGoogle Scholar
  10. 10.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822.  https://doi.org/10.1038/346818a0 CrossRefGoogle Scholar
  11. 11.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment - RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510.  https://doi.org/10.1126/science.2200121 CrossRefGoogle Scholar
  12. 12.
    Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491.  https://doi.org/10.1007/s00604-013-1156-7 CrossRefGoogle Scholar
  13. 13.
    Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC (2015) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87:274–292.  https://doi.org/10.1021/ac5037236 CrossRefPubMedGoogle Scholar
  14. 14.
    Iliuk AB, Hu LH, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452.  https://doi.org/10.1021/ac201057w CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhou W, Huang PJ, Ding J, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139(11):2627–2640.  https://doi.org/10.1039/c4an00132j CrossRefPubMedGoogle Scholar
  16. 16.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910.  https://doi.org/10.1002/adma.200802789 CrossRefPubMedGoogle Scholar
  17. 17.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779.  https://doi.org/10.1021/cr2001178 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P (2017) Gold nanoparticle-based colorimetric biosensors. Nanoscale 10(1):18–33.  https://doi.org/10.1039/c7nr06367a CrossRefPubMedGoogle Scholar
  19. 19.
    Charbgoo F, Soltani F, Taghdisi SM, Abnous K, Ramezani M (2016) Nanoparticles application in high sensitive aptasensor design. Trac-Trend Anal Chem 85:85–97.  https://doi.org/10.1016/j.trac.2016.08.008 CrossRefGoogle Scholar
  20. 20.
    Sabet FS, Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR (2017) FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem 220:527–532.  https://doi.org/10.1016/j.foodchem.2016.10.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Wang B, Chen Y, Wu Y, Weng B, Liu Y, Lu Z, Li CM, Yu C (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78:23–30.  https://doi.org/10.1016/j.bios.2015.11.015 CrossRefPubMedGoogle Scholar
  22. 22.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743.  https://doi.org/10.1021/ac00100a008 CrossRefGoogle Scholar
  23. 23.
    Chen L, Wen F, Li M, Guo X, Li S, Zheng N, Wang J (2017) A simple aptamer-based fluorescent assay for the detection of aflatoxin B1 in infant rice cereal. Food Chem 215:377–382.  https://doi.org/10.1016/j.foodchem.2016.07.148 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang J, Li Z, Zhao S, Lu Y (2016) Size-dependent modulation of graphene oxide-aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. Analyst 141(13):4029–4034.  https://doi.org/10.1039/c6an00368k CrossRefPubMedGoogle Scholar
  25. 25.
    Lu Z, Chen X, Wang Y, Zheng X, Li CM (2014) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182(3–4):571–578.  https://doi.org/10.1007/s00604-014-1360-0 CrossRefGoogle Scholar
  26. 26.
    Li Y, Wang J, Zhang B, He Y, Wang J, Wang S (2019) A rapid fluorometric method for determination of aflatoxin B1 in plant-derived food by using a thioflavin T-based aptasensor. Microchim Acta 186(4):214.  https://doi.org/10.1007/s00604-019-3325-9 CrossRefGoogle Scholar
  27. 27.
    Goud KY, Sharma A, Hayat A, Catanante G, Gobi KV, Gurban AM, Marty JL (2016) Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1: analytical performance comparison of two aptamers. Anal Biochem 508:19–24.  https://doi.org/10.1016/j.ab.2016.05.018 CrossRefPubMedGoogle Scholar
  28. 28.
    Li Y, Sun L, Zhao Q (2018) Development of aptamer fluorescent switch assay for aflatoxin B1 by using fluorescein-labeled aptamer and black hole quencher 1-labeled complementary DNA. Anal Bioanal Chem 410:6269–6277.  https://doi.org/10.1007/s00216-018-1237-x CrossRefGoogle Scholar
  29. 29.
    Taghdisi SM, Danesh NM, Ramezani M, Abnous K (2018) A new amplified fluorescent aptasensor based on hairpin structure of G-quadruplex oligonucleotide-aptamer chimera and silica nanoparticles for sensitive detection of aflatoxin B1 in the grape juice. Food Chem 268:342–346.  https://doi.org/10.1016/j.foodchem.2018.06.101 CrossRefPubMedGoogle Scholar
  30. 30.
    Nasirian V, Chabok A, Barati A, Rafienia M, Arabi MS, Shamsipur M (2017) Ultrasensitive aflatoxin B1 assay based on FRET from aptamer labelled fluorescent polymer dots to silver nanoparticles labeled with complementary DNA. Microchim Acta 184(12):4655–4662.  https://doi.org/10.1007/s00604-017-2508-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations