Advertisement

Microchimica Acta

, 186:711 | Cite as

A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium

  • Jiecan Yi
  • Pian Wu
  • Guiyin Li
  • Wen Xiao
  • Lei Li
  • Yayuan He
  • Yafei He
  • Ping DingEmail author
  • Cuimei ChenEmail author
Original Paper

Abstract

An aptamer-based assay is described for the determination of Salmonella typhimurium (S. typh). Carboxymethyl chitosan was loaded with amino-modified aptamer against S. typh, and then adsorbed on gold nanoparticles by electrostatic interaction to form a composite that acts as the molecular recognition element. In the presence of S. typh, it will be bound by the aptamer, and this changes the structure of the recognition element. On addition of salt solution, the gold nanoparticles agglomerate so that the color of the solution changes from red to blue. S. typh can be detected via measurement of the absorbance at 550 nm. Absorbance increases linearly with the logarithm of the S. typh concentration in the range from 100 to 109 cfu·mL−1. The limit of detection is 16 cfu·mL−1. The specificity and practicability of the assay were evaluated. The recoveries of S. typh from spiked milk samples are between 92.4 and 97.2%. The analytical results are basically consistent with those of a plate counting method.

Graphical abstract

Schematic representation of the colorimetric assay for Salmonella typhimuium (S. typh) using carboxymethyl chitosan (CMCS)-aptamer (Apt)-gold nanoparticles (AuNPs) composites.

Keywords

Food-borne pathogens Nanotechnology Aptamer sensor Bacterial detection Optical characteristics Methodological evaluation 

Notes

Acknowledgments

This work was supported by research grants from the National Natural Science Foundation of China (grant number 21676305) and the Fundamental Research Funds for the Central Universities of Central South University (grant number 2019zzts744).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3827_MOESM1_ESM.doc (5.3 mb)
ESM 1 (DOC 5457 kb)

References

  1. 1.
    Dos Santos AMP, Ferrari RG, Conte-Junior CA (2018) Virulence factors in Salmonella Typhimurium: the sagacity of a bacterium. Curr Microbiol 284(18):1510–1514Google Scholar
  2. 2.
    Pang L, Zhang Z, Xu J (2011) Surveillance of foodborne disease outbreaks in China in 2006—2010. Chin J Food Hygi 23:560–563Google Scholar
  3. 3.
    Hu Y (2010) Investigation information for outbreak of Salmonella Typhimurium infection in United States from 2008 to 2009. MPM 37(10):1964–1965Google Scholar
  4. 4.
    Sharma TK, Bruno JG, Dhiman A (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv 35(2):275–301CrossRefGoogle Scholar
  5. 5.
    Ruscito A, Smith M, GouDreau DN, Derosa MC (2016) Current status and future prospects for aptamer-based mycotoxin detection. J AOAC Int 99(4):865–877CrossRefGoogle Scholar
  6. 6.
    Mondal B, Ramlal S, Lavu PSR, Murali HS, Batra HV (2015) A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Appl Microbiol Biot 99(22):9791–9803CrossRefGoogle Scholar
  7. 7.
    Moon J, Kim G, Park SB, Lim J, Mo C (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus Aureus-specific DNA aptamers. Sensors 15(4):8884–8897CrossRefGoogle Scholar
  8. 8.
    Wu P, Huang RX, Li GY, He YY, Chen CM, Xiao W, Ding P (2018) Optimization of synthesis and modification of ZnSe/ZnS quantum dots for fluorescence detection of Escherichia coil. J Nanosci Nanotechnol 18:3654–3659CrossRefGoogle Scholar
  9. 9.
    Hasanzadeh M, Shadjou N, Guardia MDL (2017) Aptamer-based assay of biomolecules: recent advances inelectro-analytical approach. Trac-trend Anal Chem 89(12):119–132CrossRefGoogle Scholar
  10. 10.
    Sharma A, Goud KY, Hayat A, Bhand S, Marty JL (2017) Recent advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors 5(1):10001–10016Google Scholar
  11. 11.
    Cheng KY, Zhang JG, Zhang LP, Wang L, Chen HQ (2017) Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2+-doped NaYF4:Yb, tm upconverting nanoparticles to gold nanorods. Spectrochim Acta A 171(12):168–173CrossRefGoogle Scholar
  12. 12.
    Liu ZP, Su XG (2017) A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Biosens Bioelectron 87(61):66–72CrossRefGoogle Scholar
  13. 13.
    Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68(24):149–155CrossRefGoogle Scholar
  14. 14.
    Zhang P, Liu H, Ma SZ, Men S, Li QZ, Yang X, Wang HN, Zhang AY (2016) A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand displacement-driven assembly of G-quadruplex DNA. Biosens Bioelectron 80(12):538–542PubMedGoogle Scholar
  15. 15.
    Zhang H, Ma XY, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877CrossRefGoogle Scholar
  16. 16.
    Huang Y, Cui L, Xue Y, Zhang S, Zhu N, Liang J, Li G (2017) Ultrasensitive cholesterol biosensor based on enzymatic silver deposition on gold nanoparticles modified screen-printed carbon electrode. Mat Sci Eng C-Mater 77:1–8CrossRefGoogle Scholar
  17. 17.
    Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19CrossRefGoogle Scholar
  18. 18.
    Lu L, Li K, Mao YH, Qu H, Yao B, Zhong WW, Ma B, Wang ZY (2017) Gold-chrysophanol nanoparticles suppress human prostate cancer progression through inactivating AKT expression and inducing apoptosis and ROS generation in vitro and in vivo. Int J Oncol 51:1089–1103CrossRefGoogle Scholar
  19. 19.
    Liu YS, Du WP, Zheng KY, Fu LL, Chen M (2005) Comparative study on rapid dot-immunogold staining and two immunogold silver staining assays for diagnosing schistosomiasis japonica. Se Asian J Trop Med 36(1):79–82Google Scholar
  20. 20.
    Tanaka M, Saito Y, Misu H (2016) Development of a sol particle homogeneous immunoassay for measuring full-length selenoprotein pin human serum. J Clin Lab Anal 30(2):114–122CrossRefGoogle Scholar
  21. 21.
    Wu SJ, Wang YQ, Duan N, Ma HL, Wang ZP (2015) Colorimetric aptasensor based on enzyme for the detection of vibrio parahemolyticus. J Agric Food Chem 63(35):7849–7854CrossRefGoogle Scholar
  22. 22.
    He YY, Xiao W, Li GY, Yang F, Wu P, Yang T, Chen CM, Ding P (2019) A novel lead-ion-imprinted magnetic biosorbent: preparation, optimization and characterization. Environ Technol 40(4):488–507CrossRefGoogle Scholar
  23. 23.
    He YY, Wu P, Xiao W, Li GY, Yi JC, He YF, Chen CM, Ding P, Duan YY (2019) Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: adsorption kinetics and mechanisms. PLoS One.  https://doi.org/10.1371/journal.pone.0213377 CrossRefGoogle Scholar
  24. 24.
    Bai Z, Li G, Liang J, Su J, Zhang Y, Chen H, Huang Y, Sui W, Zhao Y (2016) Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-fc nano-hybrids for the detection of hydrogen peroxide in living cells. Biosens Bioelectron 82:185–194CrossRefGoogle Scholar
  25. 25.
    Mokhtarzadeh A, Tabarzad M, Ranjbari J, Guardia MDL, Hejazi M, Ramezani M (2016) Aptamers as smart ligands for nano-carriers targeting. Trends Anal Chem 82:316–327CrossRefGoogle Scholar
  26. 26.
    Ma XY, Song L, Zhou NX, Xia Y, Wang ZP (2017) A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int J Food Microbiol 245(24):1–5CrossRefGoogle Scholar
  27. 27.
    Xu XM, Ma XY, Wang HT, Wang ZP (2018) Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Microchim Acta 185(7):325CrossRefGoogle Scholar
  28. 28.
    Zhang P, Liu H, Li XC, Ma SZ, Men S, Wei H, Cui JJ, Wang HN (2017) A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters. Biosens Bioelectron 87:1044–1049CrossRefGoogle Scholar
  29. 29.
    Guo RY, Wang SY, Huang FC, Chen Q, Li YB, Liao M, Lin JH (2019) Rapid detection of Salmonella Typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplifcation and smartphone image analysis. Sensors Actuators B Chem 284:134–139CrossRefGoogle Scholar
  30. 30.
    Wang SY, Zheng LY, Cai GZ, Liu N, Liao M, Li YB, Zhang XB, Lin JH (2019) A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosens Bioelectron 140:111333CrossRefGoogle Scholar
  31. 31.
    Wang XL, Niazi S, Huang YK, Sun WJ, Wu SJ, Duan N, Hun X, Wang ZP (2017) Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4: Ce/Tb nanoparticles and a fluorescent DNA label. Microchim Acta 184:4021–4027CrossRefGoogle Scholar
  32. 32.
    Duan N, Wu SJ, Zhu CQ, Ma XY, Wang ZP, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6CrossRefGoogle Scholar
  33. 33.
    Hu J, Jiang YZ, Tang M, Wu LL, Xie HY, Zhang ZL, Pang DW (2018) Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal Chem.  https://doi.org/10.1021/acs.analchem.8b05154 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Xiang Ya School of Public HealthCentral South UniversityChangshaChina
  2. 2.School of Life and Environmental SciencesGuilin University of Electronic TechnologyGuilinChina
  3. 3.Hunan Institute of Food Quality Supervision Inspection and ResearchChangshaChina
  4. 4.Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
  5. 5.School of Public HealthXiangnan UniversityChenzhouChina

Personalised recommendations