Advertisement

Microchimica Acta

, 186:694 | Cite as

Space-confined synthesis of ordered mesoporous carbon doped with single-layer MoS2–boron for the voltammetric determination of theophylline

  • Xiaopeng Hu
  • Jiajia Xi
  • Yuanyuan Xia
  • Faqiong Zhao
  • Baizhao ZengEmail author
Original Paper

Abstract

A space-confined synthesis method is employed for the preparation of a single-layer MoS2–boron doped ordered mesoporous carbon nanocomposite. A phenol-formaldehyde resin is used as carbon source to create a confined space for the formation of single-layer MoS2. The addition of pluronic F127, as a soft template, suppresses the stacking of MoS2 layers and makes the composite porous. The nanocomposite is characterized by scanning electron and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The single-layer MoS2 sheets have a lateral size of about 5 nm and are uniformly embedded in the composite. They possess numerous active edge sites and display a strong synergistic effect with other components. The composite is modified on a glassy carbon electrode, followed by the electrochemical imprinting of theophylline, and the resulting electrode exhibits good electrochemical response to theophylline. The linear response range is 0.01–250 μM by differential pulse voltammetry, and the lower detection limit is 5 nM. It has been successfully applied to the determination of theophylline in spiked tea drink samples.

Graphical abstract

Single-layer MoS2–boron doped ordered mesoporous carbon nanocomposite has large surface area and high catalysis, when coupling with molecularly imprinted polymer the resulting electrode shows highly sensitive and selective response to theophylline.

Keywords

Phenol-formaldehyde resin Molecular imprinting Molybdenum disulfide Self-assembly Pluronic F127 

Notes

Acknowledgements

The authors appreciate the finial support of the National Natural Science Foundation of China (Grant No. 21775112).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

604_2019_3824_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2486 kb)

References

  1. 1.
    Jiang H, Ren DY, Wang HF, Hu YJ, Guo SJ, Yuan HY, Hu PJ, Zhang L, Li CZ (2015) 2D monolayer MoS2-carbon Interoverlapped superstructure: engineering ideal atomic Interface for Lithium ion storage. Adv Mater 27(24):3687–3695.  https://doi.org/10.1002/adma.201501059 CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang X, Zhao R, Wu Q, Li W, Shen C, Ni L, Yan H, Diao G, Chen M (2017) Petal-like MoS2 Nanosheets space-confined in hollow mesoporous carbon spheres for enhanced Lithium storage performance. ACS Nano 11(8):8429–8436.  https://doi.org/10.1021/acsnano.7b04078 CrossRefPubMedGoogle Scholar
  3. 3.
    Dalila RN, Md Arshad MK, Gopinath SCB, Norhaimi WMW, Fathil MFM (2019) Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosens Bioelectron 132:248–264.  https://doi.org/10.1016/j.bios.2019.03.005 CrossRefGoogle Scholar
  4. 4.
    Yadav V, Roy S, Singh P, Khan Z, Jaiswal A (2019) 2D MoS2 -based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small 15(1):e1803706.  https://doi.org/10.1002/smll.201803706 CrossRefPubMedGoogle Scholar
  5. 5.
    Yoon J, Lee T, Bapurao GB, Jo J, Oh BK, Choi JW (2017) Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens Bioelectron 93:14–20.  https://doi.org/10.1016/j.bios.2016.11.064 CrossRefPubMedGoogle Scholar
  6. 6.
    Govindasamy M, Chen SM, Mani V, Devasenathipathy R, Umamaheswari R, Joseph Santhanaraj K, Sathiyan A (2017) Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485:129–136.  https://doi.org/10.1016/j.jcis.2016.09.029 CrossRefPubMedGoogle Scholar
  7. 7.
    Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie RF, Curtiss LA, Salehi-Khojin A (2016) Cathode based on molybdenum disulfide Nanoflakes for Lithium–oxygen batteries. ACS Nano 10(2):2167–2175.  https://doi.org/10.1021/acsnano.5b06672 CrossRefPubMedGoogle Scholar
  8. 8.
    Shen M, Ruan C, Chen Y, Jiang C, Ai K, Lu L (2015) Covalent entrapment of cobalt–iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional Electrocatalysts for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 7(2):1207–1218.  https://doi.org/10.1021/am507033x CrossRefPubMedGoogle Scholar
  9. 9.
    Hao L, Yu J, Xu X, Yang L, Xing ZP, Dai Y, Sun Y, Zou JL (2017) Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells. J Power Sources 339:68–79.  https://doi.org/10.1016/j.jpowsour.2016.11.041 CrossRefGoogle Scholar
  10. 10.
    Wang T, Gao D, Zhuo J, Zhu Z, Papakonstantinou P, Li Y, Li M (2013) Size-dependent enhancement of Electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chem Eur J 19(36):11939–11948.  https://doi.org/10.1002/chem.201301406 CrossRefPubMedGoogle Scholar
  11. 11.
    Wan Y, Zhang Z, Xu X, Zhang Z, Li P, Fang X, Zhang K, Yuan K, Liu K, Ran G, Li Y, Ye Y, Dai L (2018) Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy 51:786–792.  https://doi.org/10.1016/j.nanoen.2018.02.027 CrossRefGoogle Scholar
  12. 12.
    Zheng Z, Feng Q, Li J, Wang C (2015) The p-type MoS2 nanocube modified poly(diallyl dimethyl ammonium chloride)-mesoporous carbon composites as a catalytic amplification platform for electrochemical detection of l -cysteine. Sensors Actuators B Chem 221:1162–1169.  https://doi.org/10.1016/j.snb.2015.07.069 CrossRefGoogle Scholar
  13. 13.
    Feng Q, Duan K, Ye X, Lu D, Du Y, Wang C (2014) A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) functionalized graphene-MoS2 nano-flower fabricated electrochemical sensor. Sensors Actuators B Chem 192:1–8.  https://doi.org/10.1016/j.snb.2013.10.087 CrossRefGoogle Scholar
  14. 14.
    Chekin F, Teodorescu F, Coffinier Y, Pan GH, Barras A, Boukherroub R, Szunerits S (2016) MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens Bioelectron 85:807–813.  https://doi.org/10.1016/j.bios.2016.05.095 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Huang KJ, Liu YJ, Wang HB, Wang YY, Liu YM (2014) Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195–202.  https://doi.org/10.1016/j.bios.2013.11.061 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Z, Chen T, Chen WX, Chang K, Ma L, Huang GC, Chen DY, Lee JY (2013) CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater Chem A 1(6):2202–2210.  https://doi.org/10.1039/c2ta00598k CrossRefGoogle Scholar
  17. 17.
    Zhou JW, Qin J, Zhang X, Shi CS, Liu EZ, Li JJ, Zhao NQ, He CN (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon Nanosheet for Lithium-ion battery anode. ACS Nano 9(4):3837–3848.  https://doi.org/10.1021/nn506850e CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou X, Wan LJ, Guo YG (2012) Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 4(19):5868–5871.  https://doi.org/10.1039/c2nr31822a CrossRefPubMedGoogle Scholar
  19. 19.
    Xu X, Fan ZY, Yu XY, Ding SJ, Yu DM, Lou XW (2014) A Nanosheets-On-Channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life Lithium storage. Adv Energy Mater 4(17):5.  https://doi.org/10.1002/aenm.201400902 CrossRefGoogle Scholar
  20. 20.
    Xu B, Yang L, Zhao F, Zeng B (2017) A novel electrochemical quercetin sensor based on Pd/MoS2 -ionic liquid functionalized ordered mesoporous carbon. Electrochim Acta 247:657–665.  https://doi.org/10.1016/j.electacta.2017.06.130 CrossRefGoogle Scholar
  21. 21.
    Niu L, Li Z, Hong W, Sun J, Wang Z, Ma L, Wang J, Yang S (2013) Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochim Acta 108:666–673.  https://doi.org/10.1016/j.electacta.2013.07.025 CrossRefGoogle Scholar
  22. 22.
    Gan T, Li J, Zhao A, Xu J, Zheng D, Wang H, Liu Y (2018) Detection of theophylline using molecularly imprinted mesoporous silica spheres. Food Chem 268:1–8.  https://doi.org/10.1016/j.foodchem.2018.06.058 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu L, Cao Y, Cao G (2014) Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol a. Biosens Bioelectron 54:258–261.  https://doi.org/10.1016/j.bios.2013.10.072 CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Zhu L, Hu Y, Peng X, Du J (2017) A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate. Food Chem 221:1128–1134.  https://doi.org/10.1016/j.foodchem.2016.11.047 CrossRefPubMedGoogle Scholar
  25. 25.
    Haldorai Y, Choe SR, Huh YS, Han Y-K (2018) A composite consisting of microporous carbon and cobalt(III) oxide and prepared from zeolitic imidazolate framework-67 for voltammetric determination of ascorbic acid. Microchim Acta 185(2):116.  https://doi.org/10.1007/s00604-018-2669-x CrossRefGoogle Scholar
  26. 26.
    Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W, Zhang C (2015) The cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal Chim Acta 899:57–65.  https://doi.org/10.1016/j.aca.2015.09.054 CrossRefPubMedGoogle Scholar
  27. 27.
    Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44(43):7053–7059.  https://doi.org/10.1002/anie.200501561 CrossRefGoogle Scholar
  28. 28.
    Hu WH, Han GQ, Dai FN, Liu YR, Shang X, Dong B, Chai YM, Liu YQ, Liu CG (2016) Effect of pH on the growth of MoS2 (002) plane and electrocatalytic activity for HER. Int J Hydrog Energy 41(1):294–299.  https://doi.org/10.1016/j.ijhydene.2015.09.076 CrossRefGoogle Scholar
  29. 29.
    Wang DW, Li F, Chen ZG, Lu GQ, Cheng HM (2008) Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater 20(22):7195–7200.  https://doi.org/10.1021/cm801729y CrossRefGoogle Scholar
  30. 30.
    Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X (2016) Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection. ACS Appl Mater Interfaces 8(32):21028–21038.  https://doi.org/10.1021/acsami.6b05440 CrossRefPubMedGoogle Scholar
  31. 31.
    Aswini KK, Vinu Mohan AM, Biju VM (2016) Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor. Mater Sci Eng C 65:116–125.  https://doi.org/10.1016/j.msec.2016.03.098 CrossRefGoogle Scholar
  32. 32.
    Kan X, Liu T, Zhou H, Li C, Fang B (2010) Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Microchim Acta 171(3):423–429.  https://doi.org/10.1007/s00604-010-0455-5 CrossRefGoogle Scholar
  33. 33.
    Guney S, Cebeci FC (2015) Selective electrochemical sensor for theophylline based on an electrode modified with imprinted sol-gel film immobilized on carbon nanoparticle layer. Sensors Actuators B Chem 208:307–314.  https://doi.org/10.1016/j.snb.2014.10.056 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xiaopeng Hu
    • 1
  • Jiajia Xi
    • 1
  • Yuanyuan Xia
    • 1
  • Faqiong Zhao
    • 1
  • Baizhao Zeng
    • 1
    Email author
  1. 1.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations