Advertisement

Microchimica Acta

, 186:740 | Cite as

Luminescent metal organic frameworks with recognition sites for detection of hypochlorite through energy transfer

  • Lan Guo
  • Yuan Liu
  • Fengli Qu
  • Zhe Liu
  • Rongmei Kong
  • Guang Chen
  • Wenjing Fan
  • Lian XiaEmail author
Original Paper
  • 55 Downloads

Abstract

A luminescent metal organic framework (LMOF) of type UiO-66-NH2 was chosen for specific and sensitive detection of trace levels of hypochlorite. Hypochlorite causes the quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm), and this finding forms the basis for a fluorometric assay for hypochlorite. The method overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite. Compared with other fluorescent probes for sensing hypochlorite, UiO-66-NH2 has a comparable detection limit of 0.3 μmol L−1 and a broad linearity relationship in the range of 1–8 μmol L−1. The probe was successfully applied to the detection of hypochlorite in complex water samples and living Hela cells.

Graphical abstract

Schematic representation of hypochlorite induced quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm) through energy transfer. It overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite.

Keywords

UiO-66-NH2 Zr-based MOFs Amino functionalized MOF Non-redox mechanism Fluorescence quenching Porous materials Water samples DPD method 

Notes

Acknowledgements

The authors thank Dr. Kathryn R. Williams for manuscript review. This work is supported by grants awarded by the National Institute of Health (GM079359 and CA133086) and the National Natural Science Foundation of China (No. 21505084, 21775089).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

604_2019_3806_MOESM1_ESM.docx (521 kb)
ESM 1 (DOCX 521 kb)

References

  1. 1.
    Schreiber JS (1981) The occurrence of trihalomethanes in public water supply systems of New York state. J Am Water Works Assoc 73(3):154–159.  https://doi.org/10.1002/j.1551-8833.1981.tb04668.x CrossRefGoogle Scholar
  2. 2.
    Zhu BC, Wu L, Zhang M, Wang YW, Liu CY, Wang ZK, Duan QX, Jia P (2018) A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens Bioelectron 107:218–223.  https://doi.org/10.1016/j.bios.2018.02.023 CrossRefPubMedGoogle Scholar
  3. 3.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85.  https://doi.org/10.1038/nrc2981 CrossRefPubMedGoogle Scholar
  4. 4.
    Hu JJ, Wong NK, Lu MY, Chen XM, Ye S, Zhao AQ, Gao P, Kao RYT, Shen JG, Yang D (2016) HKOCl-3: a fluorescent hypochlorous acid probe for live-cell and in vivo imaging and quantitative application in flow cytometry and a 96-well microplate assay. Chem Sci 7(3):2094–2099.  https://doi.org/10.1039/C5SC03855C CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang ZX, Jin X, Gao YF, Kong FY, Wang WJ, Wang W (2019) Fluorometric and colorimetric determination of hypochlorite using carbon nanodots doped with boron and nitrogen. Microchim Acta 186(6):328.  https://doi.org/10.1007/s00604-019-3443-4 CrossRefGoogle Scholar
  6. 6.
    Li K, Hou JT, Yang J, Yu XQ (2017) A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem Commun 53(40):5539–5541.  https://doi.org/10.1039/c7cc01679d CrossRefGoogle Scholar
  7. 7.
    Zhu JH, Wong KMC (2018) Dual-responsive fluorescent probe for hypochlorite via pH-modulated, ring-opening reactions of a coumarin-fused rhodol derivative. Sensors Actuators B Chem 267:208–215.  https://doi.org/10.1016/j.snb.2018.03.147 CrossRefGoogle Scholar
  8. 8.
    Shen BX, Qian Y, Qi ZQ, Lu CG, Sun Q, Xia X, Cui YP (2017) Near-infrared BODIPY-based two-photon ClO probe based on thiosemicarbazide desulfurization reaction: naked-eye detection and mitochondrial imaging. J Mater Chem B 5(29):5854–5861.  https://doi.org/10.1039/C7TB01344B CrossRefGoogle Scholar
  9. 9.
    Li GY, Lin Q, Ji LN, Chao H (2014) Phosphorescent iridium (III) complexes as multicolour probes for imaging of hypochlorite ions in mitochondria. J Mater Chem B 2(45):7918–7926.  https://doi.org/10.1039/C4TB01251H CrossRefGoogle Scholar
  10. 10.
    Xu QL, Heo CH, Kim JA, Lee HS, Hu Y, Kim D, Swamy KMK, Kim G, Nam SJ, Kim HM, Yoon J (2016) A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria. Anal Chem 88(12):6615–6620.  https://doi.org/10.1021/acs.analchem.6b01738 CrossRefPubMedGoogle Scholar
  11. 11.
    Xue M, Zhang L, Zou M, Lan C, Zhan Z, Zhao S (2015) Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensors Actuators B Chem 219:50–56.  https://doi.org/10.1016/j.snb.2015.05.021 CrossRefGoogle Scholar
  12. 12.
    Liu FY, Gao YL, Wang JT, Sun SG (2014) Reversible and selective luminescent determination of ClO/H2S redox cycle in vitro and in vivo based on a ruthenium trisbipyridyl probe. Analyst 139(13):3324–3329.  https://doi.org/10.1039/C4AN00331D CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang P, Wang Y, Chen L, Yin YB (2017) Bimetallic nanoclusters with strong red fluorescence for sensitive detection of hypochlorite in tap water. Microchim Acta 184(10):3781–3787.  https://doi.org/10.1007/s00604-017-2398-6 CrossRefGoogle Scholar
  14. 14.
    Zhang YH, Ma L, Tang CC, Pan SN, Shi DL, Wang SJ, Li MY, Guo Y (2018) A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice. J Mater Chem B 6(5):725–731.  https://doi.org/10.1039/C7TB02862H CrossRefGoogle Scholar
  15. 15.
    Lu T, Zhang L, Sun M, Deng D, Su Y, Lv Y (2016) Amino-functionalized metal-organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine. Anal Chem 88(6):3413–3420.  https://doi.org/10.1021/acs.analchem.6b00253 CrossRefPubMedGoogle Scholar
  16. 16.
    Qu F, Sun C, Lv XX, You JM (2018) A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Microchim Acta 185(8):359.  https://doi.org/10.1007/s00604-018-2888-1 CrossRefGoogle Scholar
  17. 17.
    Chen J, Chen HY, Wang TS, Li JF, Wang J, Lu XQ (2019) Copper ion fluorescent probe based on Zr-MOFs composite. Anal Chem 91(7):4331–4336.  https://doi.org/10.1021/acs.analchem.8b03924 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang X, Hu Q, Xia T, Zhang J, Yang Y, Cui Y, Chen B, Qian G (2016) Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks. ACS Appl Mater Interfaces 8(47):32259–32265.  https://doi.org/10.1021/acsami.6b12118 CrossRefPubMedGoogle Scholar
  19. 19.
    Deng JJ, Wang K, Wang M, Yu P, Mao LQ (2017) Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J Am Chem Soc 139(16):5877–5882.  https://doi.org/10.1021/jacs.7b01229 CrossRefPubMedGoogle Scholar
  20. 20.
    Ma Y, Su H, Kuang X, Li X, Zhang T, Tang B (2014) Heterogeneous nano metal-organic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells. Anal Chem 86(22):11459–11463.  https://doi.org/10.1021/ac503622n CrossRefPubMedGoogle Scholar
  21. 21.
    Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49(82):9449–9451.  https://doi.org/10.1039/c3cc46105j CrossRefGoogle Scholar
  22. 22.
    Kobayashi T, Iwata N, Oh JS, Hahizume H, Ohta T, Takeda K, Ishikawa K, Hori M, Ito M (2017) Bactericidal pathway of Escherichia coli in buffered saline treated with oxygen radicals. J Phys D Appl Phys 50(15):155208.  https://doi.org/10.1088/1361-6463/aa61d7 CrossRefGoogle Scholar
  23. 23.
    Wu XJ, Li Z, Yang L, Han JJ, Han SF (2013) A self-referenced nanodosimeter for reaction based ratiometric imaging of hypochlorous acid in living cells. Chem Sci 4(1):460–467.  https://doi.org/10.1039/C2SC21485G CrossRefGoogle Scholar
  24. 24.
    Simões EFC, Leitão JMM, da Silva JCGE (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183(5):1769–1777.  https://doi.org/10.1007/s00604-016-1807-6 CrossRefGoogle Scholar
  25. 25.
    Cheng GH, Fan JL, Sun W, Sui K, Jin X, Wang JY, Peng XJ (2013) A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst 138(20):6091–6096.  https://doi.org/10.1039/C3AN01152F CrossRefPubMedGoogle Scholar
  26. 26.
    Wang Y, Zhang P, Lu Q, Wang Y, Fu WS, Tan Q, Luo WP (2018) Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite. Microchim Acta 185(4):233.  https://doi.org/10.1007/s00604-018-2768-8 CrossRefGoogle Scholar
  27. 27.
    Wang S, Wu SH, Fang WL, Guo XF, Wang H (2019) Synthesis of non-doped and non-modified carbon dots with high quantum yield and crystallinity by one-pot hydrothermal method using a single carbon source and used for ClO detection. Dyes Pigments 164:7–13.  https://doi.org/10.1016/j.dyepig.2019.01.004 CrossRefGoogle Scholar
  28. 28.
    Tang Q, Yang TT, Huang YM (2015) Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta 182(13–14):2337–2343.  https://doi.org/10.1007/s00604-015-1586-5 CrossRefGoogle Scholar
  29. 29.
    Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213.  https://doi.org/10.1021/ac503215z CrossRefPubMedGoogle Scholar
  30. 30.
    He H, Song Y, Sun F, Zhao N, Zhu G (2015) Sorption properties and nitroaromatic explosives sensing based on two isostructural metal-organic frameworks. Cryst Growth Des 15(4):2033–2038.  https://doi.org/10.1021/acs.cgd.5b00229 CrossRefGoogle Scholar
  31. 31.
    Xiang Z, Fang C, Leng S, Cao D (2014) An amino group functionalized metal-organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J Mater Chem A 2(21):7662–7665.  https://doi.org/10.1039/C4TA00313F CrossRefGoogle Scholar
  32. 32.
    Liédana N, Lozano P, Galve A, Téllez C, Coronas J (2014) The template role of caffeine in its one-step encapsulation in MOF NH2-MIL-88B(Fe). J Mater Chem B 2(9):1144–1151.  https://doi.org/10.1039/C3TB21707H CrossRefGoogle Scholar
  33. 33.
    Han J, Shen L, Chen XB, Fang WH (2013) Phosphorescent mechanism for single-dopant white OLED of FPt: electronic structure and electron exchange-induced energy transfer. J Mater Chem B 1(27):4227–4235.  https://doi.org/10.1039/c3tc30692e CrossRefGoogle Scholar
  34. 34.
    Tan JJ, Zhang BX, Luo Y, Ye SJ (2017) Ultrafast vibrational dynamics of membrane-bound peptides at the lipid bilayer/water interface. Angew Chem Int Ed 56(42):12977–12981.  https://doi.org/10.1002/anie.201706996 CrossRefGoogle Scholar
  35. 35.
    Chikalova-Luzina OP, Samosvat DM, Vyatkin VM, Zegrya GG (2017) Resonant electronic excitation energy transfer by exchange mechanism in the quantum dot system. Superlattice Microst 111:166–172.  https://doi.org/10.1016/j.spmi.2017.06.029 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Life-Organic Analysis of Shandong ProvinceQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations