Advertisement

Microchimica Acta

, 186:695 | Cite as

A multichannel system integrating molecularly imprinted conductive polymers for ultrasensitive voltammetric determination of four steroid hormones in urine

  • Mei-Hwa Lee
  • James L. Thomas
  • Wei-Chiun Liu
  • Zheng-Xiang Zhang
  • Bin-Da Liu
  • Chien-Hsin YangEmail author
  • Hung-Yin LinEmail author
Original Paper

Abstract

This work reports on a modularized electrochemical method for the determination of the hormones cortisol, progesterone, testosterone and 17β-estradiol in urine. These hormones were employed as templates when generating molecular imprints from aniline and metanilic acid by electropolymerization on the surface of screen-printed electrodes. The electrically conductive imprint was characterized by SEM, AFM and cyclic voltammetry. A four-channel system was then established to enable simultaneous determination of the hormones by cyclic voltammetry. The detection limits for cortisol, progesterone, testosterone and 17β-estradiol are as low as 2, 2.5, 10 and 9 ag·mL−1 (for S/N = 3).

Graphical abstract

A four-channel system was established to enable simultaneous determination of 4 steroid hormones by cyclic voltammetry and by using moleculalry imprinted polymers.

Keywords

Multichannel potentiostat Hormones Molecular imprinting Electrochemical sensing Urine analysis 

Notes

Acknowledgements

The authors would like to appreciate the Ministry of Science and Technology of the Republic of China, Taiwan for financially supporting this research under contract nos. MOST 106-2221-E-390-013-MY3, 106-2314-B-390-001-MY2 and 107-2923-M-390-001-MY3.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3797_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1140 kb)

References

  1. 1.
    Norman AW, Litwack G (1997) Hormones. Academic PressGoogle Scholar
  2. 2.
    Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130(3):355–391CrossRefGoogle Scholar
  3. 3.
    Hucklebridge F, Clow A, Abeyguneratne T, Huezo-Diaz P, Evans P (1999) The awakening cortisol response and blood glucose levels. Life Sci 64(11):931–937CrossRefGoogle Scholar
  4. 4.
    Barbieri RL (2014) The endocrinology of the menstrual cycle. In: Rosenwaks Z, Wassarman PM (eds) Human fertility: methods and protocols. Springer, New York, New York, NY, pp 145–169.  https://doi.org/10.1007/978-1-4939-0659-8_7 CrossRefGoogle Scholar
  5. 5.
    Marco F (2015) Clinical roles and applications of progesterone in reproductive medicine: an overview. Acta Obstet Gynecol Scand 94 (S161:3–7.  https://doi.org/10.1111/aogs.12791 CrossRefGoogle Scholar
  6. 6.
    Blakemore S-J (2008) The social brain in adolescence. Nat Rev Neurosci 9(4):267–277CrossRefGoogle Scholar
  7. 7.
    Erickson GF, Magoffin DA, Dyer CA, Hofeditz C (1985) The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev 6(3):371–399CrossRefGoogle Scholar
  8. 8.
    Dalal PK, Agarwal M (2015) Postmenopausal syndrome. Indian J Psychiatry 57(Suppl 2):S222–S232.  https://doi.org/10.4103/0019-5545.161483 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang C-Y, O'Hare D, Chao IJ, Wei H-W, Liang Y-F, Liu B-D, Lee M-H, Lin H-Y (2015) Integrated potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted poly(ethylene-co-vinyl alcohol). Biosens Bioelectron 67:208–213.  https://doi.org/10.1016/j.bios.2014.08.018 CrossRefPubMedGoogle Scholar
  10. 10.
    Huang C-Y, Tsai T-C, Thomas JL, Lee M-H, Liu B-D, Lin H-Y (2009) Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors. Biosens Bioelectron 24(8):2611–2617.  https://doi.org/10.1016/j.bios.2009.01.016 CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao G, Si Y, Wang H, Liu G (2016) A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry. Int J Electrochem Sci 11:54–64Google Scholar
  12. 12.
    Yin L-T, Wang H-Y, Lin Y-C, Huang W-C (2012) A novel instrumentation circuit for electrochemical measurements. Sensors (Basel, Switzerland) 12(7):9687–9696.  https://doi.org/10.3390/s120709687 CrossRefGoogle Scholar
  13. 13.
    Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2(1):19–24CrossRefGoogle Scholar
  14. 14.
    Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402(10):3177–3204.  https://doi.org/10.1007/s00216-011-5696-6 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors – the electrochemical approach. Anal Bioanal Chem 402(5):1827–1846.  https://doi.org/10.1007/s00216-011-5405-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Sreenivasan K (2007) Identification of salicylic acid using surface modified polyurethane film using an imprinted layer of polyaniline. Anal Chim Acta 583(2):284–288.  https://doi.org/10.1016/j.aca.2006.10.019 CrossRefPubMedGoogle Scholar
  17. 17.
    Najafi M, Mollazadeh M (2011) Selective recognition of chloroacetic acids by imprinted polyaniline film. J Appl Polym Sci 121(1):292–298CrossRefGoogle Scholar
  18. 18.
    Roy AK, Dhand C, Malhotra BD (2011) Molecularly imprinted polyaniline film for ascorbic acid detection. J Mol Recognit 24(4):700–706CrossRefGoogle Scholar
  19. 19.
    Roy AC, Nisha V, Dhand C, Ali MA, Malhotra B (2013) Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for Para-nitrophenol detection. Anal Chim Acta 777:63–71CrossRefGoogle Scholar
  20. 20.
    Saadati F, Ghahramani F, Shayani-jam H, Piri F, Yaftian MR (2018) Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J Taiwan Inst Chem Eng 86:213–221.  https://doi.org/10.1016/j.jtice.2018.02.019 CrossRefGoogle Scholar
  21. 21.
    Lee M-H, O'Hare D, Guo H-Z, Yang C-H, Lin H-Y (2016) Electrochemical sensing of urinary progesterone with molecularly imprinted poly(aniline-co-metanilic acid)s. J Mater Chem B 4(21):3782–3787.  https://doi.org/10.1039/C6TB00760K CrossRefGoogle Scholar
  22. 22.
    Luo SC, Thomas JL, Guo HZ, Liao WT, Lee MH, Lin HY (2017) Electrosynthesis of nanostructured, imprinted poly(hydroxymethyl 3,4-ethylenedioxythiophene) for the ultrasensitive electrochemical detection of urinary progesterone. ChemistrySelect 2(26):7935–7939.  https://doi.org/10.1002/slct.201701469 CrossRefGoogle Scholar
  23. 23.
    Hrichi H, Monser L, Adhoum N (2017) A novel electrochemical sensor based on electropolymerized molecularly imprinted poly(aniline-co-anthranilic acid) for sensitive detection of amlodipine. J Electroanal Chem 805:133–145.  https://doi.org/10.1016/j.jelechem.2017.10.019 CrossRefGoogle Scholar
  24. 24.
    Yang C-H, Chih Y-K, Cheng H-E, Chen C-H (2005) Nanofibers of self-doped polyaniline. Polymer 46(24):10688–10698.  https://doi.org/10.1016/j.polymer.2005.09.044 CrossRefGoogle Scholar
  25. 25.
    Yang CH, Wen TC (1994) Polyaniline derivative with external and internal doping via electrochemical copolymerization of aniline and 2,5-Diaminobenzenesulfonic acid on IrO2 - coated titanium electrode. J Electrochem Soc 141(10):2624–2632.  https://doi.org/10.1149/1.2059144 CrossRefGoogle Scholar
  26. 26.
    Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18(1):285–290.  https://doi.org/10.1016/0379-6779(87)90893-9 CrossRefGoogle Scholar
  27. 27.
    Stilwell DE, Park SM (1988) Electrochemistry of conductive polymers: III . Some physical and electrochemical properties observed from electrochemically grown polyaniline. J Electrochem Soc 135(10):2491–2496.  https://doi.org/10.1149/1.2095364 CrossRefGoogle Scholar
  28. 28.
    Duić L, Mandić Z (1992) Counter-ion and pH effect on the electrochemical synthesis of polyaniline. J Electroanal Chem 335(1–2):207–221CrossRefGoogle Scholar
  29. 29.
    Murase N, Taniguchi S-i, Takano E, Kitayama Y, Takeuchi T (2016) A molecularly imprinted nanocavity-based fluorescence polarization assay platform for cortisol sensing. J Mater Chem B 4(10):1770–1777.  https://doi.org/10.1039/C5TB02069G CrossRefGoogle Scholar
  30. 30.
    Murase N, Taniguchi SI, Takano E, Kitayama Y, Takeuchi T (2015) Fluorescence reporting of binding interactions of target molecules with Core–Shell-type cortisol-imprinted polymer particles using environmentally responsible fluorescent-labeled cortisol. Macromol Chem Phys 216(13):1396–1404.  https://doi.org/10.1002/macp.201500065 CrossRefGoogle Scholar
  31. 31.
    Suda N, Sunayama H, Kitayama Y, Kamon Y, Takeuchi T (2017) Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. R Soc Open Sci 4(8):170300.  https://doi.org/10.1098/rsos.170300 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Usha SP, Shrivastav AM, Gupta BD (2017) A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. Biosens Bioelectron 87:178–186.  https://doi.org/10.1016/j.bios.2016.08.040 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringI-Shou UniversityKaohsiungTaiwan
  2. 2.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan
  4. 4.Department of Chemical and Materials EngineeringNational University of Kaohsiung (NUK)KaohsiungTaiwan

Personalised recommendations